Global stability result for parabolic Cauchy problems

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mourad Choulli ◽  
Masahiro Yamamoto

AbstractUniqueness of parabolic Cauchy problems is nowadays a classical problem and since Hadamard [Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Dover, New York, 1953], these kind of problems are known to be ill-posed and even severely ill-posed. Until now, there are only few partial results concerning the quantification of the stability of parabolic Cauchy problems. We bring in the present work an answer to this issue for smooth solutions under the minimal condition that the domain is Lipschitz.

2021 ◽  
Vol 24 (3) ◽  
pp. 895-922
Author(s):  
Platon G. Surkov

Abstract A specific formulation of the “classical” problem of mathematical analysis is considered. This is the problem of calculating the derivative of a function. The purpose of this work is to construct an algorithm for the approximate calculation of the Caputo-type fractional derivative based on the methods of control theory. The input data of the algorithm is represented by inaccurate measured function values at discrete, frequently enough, times. The proposed algorithm is based on two aspects: a local modification of the Tikhonov regularization method from the theory of ill-posed problems and the Krasovskii extremal shift method from the guaranteed control theory, both of which ensure the stability to informational noises and computational errors. Numerical experiments were carried out to illustrate the operation of the algorithm.


Author(s):  
Brian Street

This book develops a new theory of multi-parameter singular integrals associated with Carnot–Carathéodory balls. The book first details the classical theory of Calderón–Zygmund singular integrals and applications to linear partial differential equations. It then outlines the theory of multi-parameter Carnot–Carathéodory geometry, where the main tool is a quantitative version of the classical theorem of Frobenius. The book then gives several examples of multi-parameter singular integrals arising naturally in various problems. The final chapter of the book develops a general theory of singular integrals that generalizes and unifies these examples. This is one of the first general theories of multi-parameter singular integrals that goes beyond the product theory of singular integrals and their analogs. This book will interest graduate students and researchers working in singular integrals and related fields.


Sign in / Sign up

Export Citation Format

Share Document