scholarly journals Residuation in non-associative MV-algebras

2018 ◽  
Vol 68 (6) ◽  
pp. 1313-1320
Author(s):  
Ivan Chajda ◽  
Helmut Länger

Abstract It is well known that every MV-algebra can be converted into a residuated lattice satisfying divisibility and the double negation law. In a previous paper the first author and J. Kühr introduced the concept of an NMV-algebra which is a non-associative modification of an MV-algebra. The natural question arises if an NMV-algebra can be converted into a residuated structure, too. Contrary to MV-algebras, NMV-algebras are not based on lattices but only on directed posets and the binary operation need not be associative and hence we cannot expect to obtain a residuated lattice but only an essentially weaker structure called a conditionally residuated poset. Considering several additional natural conditions we show that every NMV-algebra can be converted in such a structure. Also conversely, every such structure can be organized into an NMV-algebra. Further, we study an a bit more stronger version of an algebra where the binary operation is even monotone. We show that such an algebra can be organized into a residuated poset and, conversely, every residuated poset can be converted in this structure.

2010 ◽  
Vol 60 (1) ◽  
Author(s):  
Ivan Chajda

AbstractHaving an MV-algebra, we can restrict its binary operation addition only to the pairs of orthogonal elements. The resulting structure is known as an effect algebra, precisely distributive lattice effect algebra. Basic algebras were introduced as a generalization of MV-algebras. Hence, there is a natural question what an effect-like algebra can be reached by the above mentioned construction if an MV-algebra is replaced by a basic algebra. This is answered in the paper and properties of these effect-like algebras are studied.


2016 ◽  
Vol 09 (04) ◽  
pp. 1650088
Author(s):  
Ivan Chajda ◽  
Helmut Länger

It is an easy observation that every residuated lattice is in fact a semiring because multiplication distributes over join and the other axioms of a semiring are satisfied trivially. This semiring is commutative, idempotent and simple. The natural question arises if the converse assertion is also true. We show that the conversion is possible provided the given semiring is, moreover, completely distributive. We characterize semirings associated to complete residuated lattices satisfying the double negation law where the assumption of complete distributivity can be omitted. A similar result is obtained for idempotent residuated lattices.


2017 ◽  
Vol 5 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Ivan Chajda ◽  
Helmut Länger

Abstract We show that every idempotent weakly divisible residuated lattice satisfying the double negation law can be transformed into an orthomodular lattice. The converse holds if adjointness is replaced by conditional adjointness. Moreover, we show that every positive right residuated lattice satisfying the double negation law and two further simple identities can be converted into an orthomodular lattice. In this case, also the converse statement is true and the corresponence is nearly one-to-one.


2006 ◽  
Vol 05 (04) ◽  
pp. 417-439
Author(s):  
A. DI NOLA ◽  
P. FLONDOR ◽  
B. GERLA

In this paper we introduce an extension of MV-algebras obtained by adding a binary operation and a constant, with the aim of modelling composition of functions. The variety of Composition MV-algebra (CMV-algebra, for short) is defined and some results regarding ideals and congruences are stated. Further, we define modules over CMV-algebras showing that to any substitution corresponds an endomorphism of modules.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 253
Author(s):  
Ivan Chajda ◽  
Helmut Länger

Given an integral commutative residuated lattices L=(L,∨,∧), its full twist-product (L2,⊔,⊓) can be endowed with two binary operations ⊙ and ⇒ introduced formerly by M. Busaniche and R. Cignoli as well as by C. Tsinakis and A. M. Wille such that it becomes a commutative residuated lattice. For every a∈L we define a certain subset Pa(L) of L2. We characterize when Pa(L) is a sublattice of the full twist-product (L2,⊔,⊓). In this case Pa(L) together with some natural antitone involution ′ becomes a pseudo-Kleene lattice. If L is distributive then (Pa(L),⊔,⊓,′) becomes a Kleene lattice. We present sufficient conditions for Pa(L) being a subalgebra of (L2,⊔,⊓,⊙,⇒) and thus for ⊙ and ⇒ being a pair of adjoint operations on Pa(L). Finally, we introduce another pair ⊙ and ⇒ of adjoint operations on the full twist-product of a bounded commutative residuated lattice such that the resulting algebra is a bounded commutative residuated lattice satisfying the double negation law, and we investigate when Pa(L) is closed under these new operations.


2017 ◽  
Vol 8 (1) ◽  
pp. 67
Author(s):  
A. K. Mousa

In this paper, we define and investigate the notions of \(L\)-separation axioms in \(L\)-fuzzifying supra-topology. Also, some of their characterizations and a systematic discussion on the relationship among these notions is gave in \(L\)-fuzzifying supra-topology where \(L\) is a complete residuated lattice. Sometimes we need more conditions on \(L\) such as the completely distributive law or that the "\(\wedge\)" is distributive over arbitrary joins or the double negation law as we illustrate through this paper. As applications of our work the corresponding results (see \cite{2, 13}) are generalized and new consequences are obtained.


10.29007/mmts ◽  
2018 ◽  
Author(s):  
José Gil-Férez ◽  
Antonio Ledda ◽  
Constantine Tsinakis

The existence of lateral completions of ℓ-groups is an old problem that was first solved, for conditionally complete vector lattices, by Nakano. The existence and uniqueness of lateral completions of representable ℓ-groups was first obtained as a consequence of the orthocompletions of Bernau, and later the proofs were simplified by Conrad, who also proved the existence and uniqueness of lateral completions of ℓ-groups with zero radical. Finally, Bernau solved the problem for ℓ-groups in general.In this work, we address the problem of the existence and uniqueness of lateral, projectable, and strongly projectable completions of residuated lattices. In particular, we push the methods of Conrad through to the case of the representable GMV-algebras.The leading idea is to construct, for any given semilinear residuated lattice, an orthocomplete extension such that the former is dense in the latter. This extension is obtained as the direct limit of a family of residuated lattices that are constructed using maximal partitions of the algebra of polars of the original residuated lattice.In order to complete the proof we still need another hypothesis, which is an abstraction of the condition of double negation in which commutativity and integrality have been dropped, and determines the wide class of Generalized MV-algebras. This, together with the density, allows us to obtain the completions of the given residuated lattice.


2010 ◽  
Vol 60 (6) ◽  
Author(s):  
Jiří Rachůnek ◽  
Dana Šalounová

AbstractBounded Rℓ-monoids form a large subclass of the class of residuated lattices which contains certain of algebras of fuzzy and intuitionistic logics, such as GMV-algebras (= pseudo-MV-algebras), pseudo-BL-algebras and Heyting algebras. Moreover, GMV-algebras and pseudo-BL-algebras can be recognized as special kinds of pseudo-MV-effect algebras and pseudo-weak MV-effect algebras, i.e., as algebras of some quantum logics. In the paper, bipartite, local and perfect Rℓ-monoids are investigated and it is shown that every good perfect Rℓ-monoid has a state (= an analogue of probability measure).


2021 ◽  
Author(s):  
Masoud Haveshki

Abstract We define the essential extension of a filter in the residuated lattice A associated to an ideal of L(A) and investigate its related properties. We prove the residuated lattice A is a Boolean algebra, G(RL)-algebra or MV -algebra if and only if the essential extension of {1} associated to A \ P is a Boolean filter, G-filter or MV -filter (for all P ∈ SpecA), respectively. Also, some properties of lattice of essential extensions are studied.


Author(s):  
F. Forouzesh ◽  
E. Eslami ◽  
A. Borumand Saeid

Abstract In this paper, we introduce the notion of the radical of an ideal in MV - algebras. Several characterizations of this radical is given. We define the notion of a semi-maximal ideal in an MV -algebra and prove some theorems which give relations between this semi-maximal ideal and the other types of ideals in MV -algebras. Also we prove that A/I is a semi-simple MV -algebra if and only if I is a semi-maximal ideal of an MV -algebra A. The above notions are used to define the radical of A-ideals in MV -modules and investigate some properties. Mathematics Subject Classification 2010: 03B50, 03G25, 06D35


Sign in / Sign up

Export Citation Format

Share Document