scholarly journals Adjoint Operations in Twist-Products of Lattices

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 253
Author(s):  
Ivan Chajda ◽  
Helmut Länger

Given an integral commutative residuated lattices L=(L,∨,∧), its full twist-product (L2,⊔,⊓) can be endowed with two binary operations ⊙ and ⇒ introduced formerly by M. Busaniche and R. Cignoli as well as by C. Tsinakis and A. M. Wille such that it becomes a commutative residuated lattice. For every a∈L we define a certain subset Pa(L) of L2. We characterize when Pa(L) is a sublattice of the full twist-product (L2,⊔,⊓). In this case Pa(L) together with some natural antitone involution ′ becomes a pseudo-Kleene lattice. If L is distributive then (Pa(L),⊔,⊓,′) becomes a Kleene lattice. We present sufficient conditions for Pa(L) being a subalgebra of (L2,⊔,⊓,⊙,⇒) and thus for ⊙ and ⇒ being a pair of adjoint operations on Pa(L). Finally, we introduce another pair ⊙ and ⇒ of adjoint operations on the full twist-product of a bounded commutative residuated lattice such that the resulting algebra is a bounded commutative residuated lattice satisfying the double negation law, and we investigate when Pa(L) is closed under these new operations.

2016 ◽  
Vol 09 (04) ◽  
pp. 1650088
Author(s):  
Ivan Chajda ◽  
Helmut Länger

It is an easy observation that every residuated lattice is in fact a semiring because multiplication distributes over join and the other axioms of a semiring are satisfied trivially. This semiring is commutative, idempotent and simple. The natural question arises if the converse assertion is also true. We show that the conversion is possible provided the given semiring is, moreover, completely distributive. We characterize semirings associated to complete residuated lattices satisfying the double negation law where the assumption of complete distributivity can be omitted. A similar result is obtained for idempotent residuated lattices.


2018 ◽  
Vol 68 (6) ◽  
pp. 1313-1320
Author(s):  
Ivan Chajda ◽  
Helmut Länger

Abstract It is well known that every MV-algebra can be converted into a residuated lattice satisfying divisibility and the double negation law. In a previous paper the first author and J. Kühr introduced the concept of an NMV-algebra which is a non-associative modification of an MV-algebra. The natural question arises if an NMV-algebra can be converted into a residuated structure, too. Contrary to MV-algebras, NMV-algebras are not based on lattices but only on directed posets and the binary operation need not be associative and hence we cannot expect to obtain a residuated lattice but only an essentially weaker structure called a conditionally residuated poset. Considering several additional natural conditions we show that every NMV-algebra can be converted in such a structure. Also conversely, every such structure can be organized into an NMV-algebra. Further, we study an a bit more stronger version of an algebra where the binary operation is even monotone. We show that such an algebra can be organized into a residuated poset and, conversely, every residuated poset can be converted in this structure.


2017 ◽  
Vol 5 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Ivan Chajda ◽  
Helmut Länger

Abstract We show that every idempotent weakly divisible residuated lattice satisfying the double negation law can be transformed into an orthomodular lattice. The converse holds if adjointness is replaced by conditional adjointness. Moreover, we show that every positive right residuated lattice satisfying the double negation law and two further simple identities can be converted into an orthomodular lattice. In this case, also the converse statement is true and the corresponence is nearly one-to-one.


2003 ◽  
Vol 13 (04) ◽  
pp. 437-461 ◽  
Author(s):  
KEVIN BLOUNT ◽  
CONSTANTINE TSINAKIS

A residuated lattice is an ordered algebraic structure [Formula: see text] such that <L,∧,∨> is a lattice, <L,·,e> is a monoid, and \ and / are binary operations for which the equivalences [Formula: see text] hold for all a,b,c ∈ L. It is helpful to think of the last two operations as left and right division and thus the equivalences can be seen as "dividing" on the right by b and "dividing" on the left by a. The class of all residuated lattices is denoted by ℛℒ The study of such objects originated in the context of the theory of ring ideals in the 1930s. The collection of all two-sided ideals of a ring forms a lattice upon which one can impose a natural monoid structure making this object into a residuated lattice. Such ideas were investigated by Morgan Ward and R. P. Dilworth in a series of important papers [15, 16, 45–48] and also by Krull in [33]. Since that time, there has been substantial research regarding some specific classes of residuated structures, see for example [1, 9, 26] and [38], but we believe that this is the first time that a general structural theory has been established for the class ℛℒ as a whole. In particular, we develop the notion of a normal subalgebra and show that ℛℒ is an "ideal variety" in the sense that it is an equational class in which congruences correspond to "normal" subalgebras in the same way that ring congruences correspond to ring ideals. As an application of the general theory, we produce an equational basis for the important subvariety ℛℒC that is generated by all residuated chains. In the process, we find that this subclass has some remarkable structural properties that we believe could lead to some important decomposition theorems for its finite members (along the lines of the decompositions provided in [27]).


2017 ◽  
Vol 8 (1) ◽  
pp. 67
Author(s):  
A. K. Mousa

In this paper, we define and investigate the notions of \(L\)-separation axioms in \(L\)-fuzzifying supra-topology. Also, some of their characterizations and a systematic discussion on the relationship among these notions is gave in \(L\)-fuzzifying supra-topology where \(L\) is a complete residuated lattice. Sometimes we need more conditions on \(L\) such as the completely distributive law or that the "\(\wedge\)" is distributive over arbitrary joins or the double negation law as we illustrate through this paper. As applications of our work the corresponding results (see \cite{2, 13}) are generalized and new consequences are obtained.


2020 ◽  
Vol 16 (03) ◽  
pp. 593-608
Author(s):  
F. Forouzesh ◽  
S. N. Hosseini

In this paper, we introduce soaker filters in a residuated lattice, give some characterizations and investigate some properties of them. Then we define a topology on the set of all the soaker filters, which we call reflectional topology, show it is an Alexandrov topology and give a basis for it. We introduce the notion of join-soaker filters and prove that when the residuated lattice is a join-soaker filter, then the reflectional topology is compact. We also give a characterization of connectedness of the reflectional topology. Finally, we prove the reflectional topology is [Formula: see text], give necessary and sufficient conditions under which it is [Formula: see text] and prove that being [Formula: see text] is equivalent to being [Formula: see text]. Several illustrative examples are given.


2014 ◽  
Vol 64 (5) ◽  
Author(s):  
Michiro Kondo

AbstractWe define states on bounded commutative residuated lattices and consider their property. We show that, for a bounded commutative residuated lattice X, (1)If s is a state, then X/ker(s) is an MV-algebra.(2)If s is a state-morphism, then X/ker(s) is a linearly ordered locally finite MV-algebra.Moreover we show that for a state s on X, the following statements are equivalent: (i)s is a state-morphism on X.(ii)ker(s) is a maximal filter of X.(iii)s is extremal on X.


10.29007/mmts ◽  
2018 ◽  
Author(s):  
José Gil-Férez ◽  
Antonio Ledda ◽  
Constantine Tsinakis

The existence of lateral completions of ℓ-groups is an old problem that was first solved, for conditionally complete vector lattices, by Nakano. The existence and uniqueness of lateral completions of representable ℓ-groups was first obtained as a consequence of the orthocompletions of Bernau, and later the proofs were simplified by Conrad, who also proved the existence and uniqueness of lateral completions of ℓ-groups with zero radical. Finally, Bernau solved the problem for ℓ-groups in general.In this work, we address the problem of the existence and uniqueness of lateral, projectable, and strongly projectable completions of residuated lattices. In particular, we push the methods of Conrad through to the case of the representable GMV-algebras.The leading idea is to construct, for any given semilinear residuated lattice, an orthocomplete extension such that the former is dense in the latter. This extension is obtained as the direct limit of a family of residuated lattices that are constructed using maximal partitions of the algebra of polars of the original residuated lattice.In order to complete the proof we still need another hypothesis, which is an abstraction of the condition of double negation in which commutativity and integrality have been dropped, and determines the wide class of Generalized MV-algebras. This, together with the density, allows us to obtain the completions of the given residuated lattice.


Sign in / Sign up

Export Citation Format

Share Document