Influence of Oxygen on the Iridium Silicide Formation by Rapid Thermal Annealing

1994 ◽  
Vol 299 ◽  
Author(s):  
M. Fernandez ◽  
T. Rodriguez ◽  
A. Almendra ◽  
J. Jimenez-Leube ◽  
H. Wolters

AbstractIridium silicide formation by rapid thermal annealing (RTA) in an Ar atmosphere or under vacuum has been investigated. The evolution of the silicide front and the identification of the phases were monitored by Auger Electron Spectroscopy (AES) and Rutherford Backscattering Spectrometry (RBS). Oxygen was incorporated during the RTA process in an Ar atmosphere. The oxygen effect is to slow down the silicide formation and eventually to stop it. In all the cases, the oxygen piled-up at the iridium-iridium silicide interface. No distinguishable phase was formed by RTA in an Ar atmosphere. No oxygen contarsi'nation was detected when the RTA was performed under a vacuum lower than 2×10−5 Torr. In this case Ir1Si1 and Ir1Si1.75 phases were formed.

1994 ◽  
Vol 299 ◽  
Author(s):  
T. Rodriguez ◽  
H. Wolters ◽  
A. Almendra ◽  
J. Sanz-Maudes ◽  
M.F. Da Silva ◽  
...  

AbstractIridium silicides formation by rapid thermal annealing (RTA) under vacuum at several temperatures in the range of 350 to 650°C has been investigated. The substrates and the silicide films were analyzed by Rutherford backscattering spectrometry (RBS) and Auger electron spectroscopy (AES). At 350°C, no distinguishable phase was detected for 240 seconds of annealing time. At 400°C, for processing time up to 45 seconds only Ir1Si1 was formed, for longer processing time Ir1Si1.75 was formed too. At higher temperatures even for very short processing time, Ir1Si1.75 was formed. Ir, Ir1Si1 and Ir1Si1.75 were present simultaneously if the iridium film was thick enough and the processing time was long enough too. For thin iridium layers, the Ir1Si1 formed was totally converted to Ir1Si1.75, if the annealing time was long enough. Formation rates were observed to be three to five orders of magnitude faster than the reported for furnace annealing.


1998 ◽  
Vol 525 ◽  
Author(s):  
B. Claflin ◽  
M. Binger ◽  
G. Lucovsky

ABSTRACTThe chemical stability of the compound metals TiNx and WNx on SiO2 and SiO2/Si3N4 (ON) dielectric stacks is studied by on-line Auger electron spectroscopy (AES) following sequential rapid thermal annealing treatments of 15 - 180 s up to 850 °C. The TiNx/SiO2 interface reacts at 850 °C and the reaction is kinetics driven. The TiNx/Si3N4 interface is more stable than TiNx/SiO2 even after a 180 s anneal at 850 °C. WNx is stable below 650 °C both on SiO2 and Si3N4, but above this temperature the film changes, possibly due to crystallization or interdiffusion. The changes in the WNx film are not controlled by kinetics. The compound metals are chemically more stable at elevated temperatures than pure Ti or W on SiO2.


Sign in / Sign up

Export Citation Format

Share Document