Strain-Induced Diffusion in Heteroepitaxially Grown CuInSe2 on GaAs Substrates

1995 ◽  
Vol 399 ◽  
Author(s):  
P. Fons ◽  
S. Niki ◽  
A. Yamada ◽  
A. Okada ◽  
D.J. Tweet

ABSTRACTA series of CuInSe2 thin films of varying thicknesses were grown on both GaAs(001) substrates and nominally lattice-matched In0.29Ga0.71As (001) linearly graded buffers by MBE at 450°C. Transmission electron microscopy and high resolution x-ray diffraction measurements revealed the presence of a second phase with chalcopyrite symmetry strained to the CuInSe2 thin film in-plane lattice constant for CuInSe2 films grown on GaAs substrates. Further examination confirmed that the second phase possessed chalcopyrite symmetry. No second phase was observed in films grown on nearly lattice-matched In0.29Ga0.71As (001) linearly graded buffers. Secondary ion mass spectrometry confirmed the presence of interdiffusion from of Ga from the substrate into the CuInSe2layer. It is speculated that this diffusion is related to the state of stress due to heteroepitaxial misfit.

1995 ◽  
Vol 403 ◽  
Author(s):  
E. Kamiinska ◽  
A. Piotrowska ◽  
A. Barcz ◽  
S. Kasjaniuk ◽  
E. Mizera ◽  
...  

AbstractThe interactions between thin films of Zn and (100)InP were analysed with secondary ion mass spectrometry, X-ray diffraction and transmission electron microscopy. Zn was found to penetrate the native oxide on InP surface during deposition, and to form an ohmic contact when deposited on n-type InP. Under heat treatment Zn protrudes into InP, and beneath Zn/InP interface a tetragonal Zn3P2 phase lattice matched to InP grows.


Author(s):  
Wen-Hsin Chang ◽  
Hsien-Wen Wan ◽  
Yi-Ting Cheng ◽  
Yen-Hsun Glen Lin ◽  
Toshifumi IRISAWA ◽  
...  

Abstract Germanium-on-Insulator (GeOI) structures with the surface orientation of (111) have been successfully fabricated by using low thermal budget epitaxial-lift-off (ELO) technology via direct bonding and selective etching. The material characteristics and transport properties of the Ge(111)OI structure have been systematically investigated through secondary-ion mass spectrometry, Raman spectroscopy, X-ray diffraction, high-resolution transmission electron microscope, and Hall measurement. The transferred Ge (111) layer remained almost intact from the as-grown epitaxial layers, indicating the benefits of ELO technology. The low thermal budget ELO technology demonstrated in this work is promising to integrate Ge channels with different surface orientations on Si (100) substrates for future monolithic 3D applications.


2009 ◽  
Vol 615-617 ◽  
pp. 947-950 ◽  
Author(s):  
Michał A. Borysiewicz ◽  
Eliana Kamińska ◽  
Anna Piotrowska ◽  
Iwona Pasternak ◽  
Rafał Jakieła ◽  
...  

Presented are the results of studies on Ti-Al-N MAX phase formation in thin film multilayers of Ti, Al and TiN deposited on n-type GaN by magnetron sputtering. Two approaches to phase formation are shown, annealing Ti-Al-TiN multilayers at 600oC in argon and annealing Ti/Al multilayers at 600oC in nitrogen. Samples are characterized by means of High Resolution X-Ray Diffraction and Secondary Ion Mass Spectrometry profiling. As MAX phases are very stable at high temperatures the potential of their application as ohmic contacts to n-GaN devices is discussed.


1990 ◽  
Vol 5 (3) ◽  
pp. 578-586 ◽  
Author(s):  
A. F. de Jong ◽  
K. T. F. Janssen

In this paper two methods for measuring aluminum compositions in very thin (1.5–15 nm), individual AlxGa1–xAs layers are investigated. The transmission electron microscopy (TEM) thickness-fringe method uses the bright-field extinction fringes from a small, cleaved 90° wedge imaged in a [100] orientation. By comparing calculated and experimental extinction fringes, compositions are determined with a sensitivity in x of 0.03, in layers with a thickness of 3.5 nm. With secondary ion mass spectrometry (SIMS), compositions in AlxGa1–xAs layers with a thickness of 15 nm are measured with an accuracy in x between 0.02 and 0.05. Thicker layers (1 μm) with a composition known from x-ray diffraction measurements are used as a reference for both methods. Subsequently, TEM results are compared with SIMS and the reference measurements. The overall agreement is good, but for 0.25 < x < 0.65, the values of x found by TEM are systematically 0.05 too low. Using the SIMS and reference measurements as a calibration, compositions can be determined by TEM with an accuracy between 0.03 (low x) and 0.05 (high x) in layers as thin as 1.5 nm.


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


1994 ◽  
Vol 299 ◽  
Author(s):  
Saket Chadda ◽  
Kevin Malloy ◽  
John Reno

AbstractCd0.91Zn0.09Te/CdTe multilayers of various period thicknesses were inserted into Cd0.955Zn0.045Te bulk alloys grown on (001) GaAs. The net strain of the multilayer on the underlying Cd0.955Zn0.045Te was designed to be zero. X-ray diffraction full width at half maximum (FWHM) was used as a means to optimize the period thickness of the multilayer. Transmission electron microscopy of the optimum period thickness samples demonstrated four orders of magnitude decrease in the threading dislocation density. Mechanism of bending by equi-strained multilayers is discussed.


2009 ◽  
Vol 289-292 ◽  
pp. 541-550 ◽  
Author(s):  
Jerzy Jedlinski ◽  
Zbigniew Żurek ◽  
Martah Homa ◽  
G. Smoła ◽  
J. Camra

The oxidation mechanism of FeCrAl (+RE), RE: reactive elements: Y and Hf) thin foils was studied at temperatures ranging from 1093 K to 1173 K in SO2+1%O2 atmosphere. Materials were subjected to isothermal and thermal cycling exposures as well as to the so-called two-stage-oxidation. In the latter, an oxygen isotope 18O2 was used as a tracer. Starting materials and scales were characterized using Grazing Angle X-Ray Diffraction (GA-XRD), EDX, SEM, XPS and High Spatial Resolution Secondary Ion Mass Spectrometry (HSR-SIMS). The obtained results showed within the studied range of exposure conditions the scales on all the studied alloys grow via outward mechanism typical for transient oxides and not for the -Al2O3 which is consistent with phase composition results and scale morphology and/or microstructure. It was also found that ‘as received’ foils are not bare metals but complex oxide-on-metal systems resulting from their manufacturing procedure. The obtained results are discussed in terms of the diffusion-related transport properties of the scale and of the scale phase composition.


1998 ◽  
Vol 537 ◽  
Author(s):  
M.D. McCluskey ◽  
L.T. Romano ◽  
B.S. Krusor ◽  
D. Hofstetter ◽  
D.P. Bour ◽  
...  

AbstractInterdiffusion of In and Ga is observed in InGaN multiple-quantum-well superlattices for annealing temperatures of 1250 to 1400°C. Hydrostatic pressures of up to 15 kbar were applied during the annealing treatments to prevent decomposition of the InGaN and GaN. In as-grown material, x-ray diffraction spectra show InGaN superlattice peaks up to the fourth order. After annealing at 1400°C for 15 min, only the zero-order InGaN peak is observed, a result of compositional disordering of the superlattice. Composition profiles from secondary ion mass spectrometry indicate significant diffusion of Mg from the p-type GaN layer into the quantum well region. This Mg diffusion may lead to an enhancement of superlattice disordering. For annealing temperatures between 1250 and 1300°C, a blue shift of the InGaN spontaneous emission peak is observed, consistent with interdiffusion of In and Ga in the quantum-well region.


Sign in / Sign up

Export Citation Format

Share Document