Strain-Induced Diffusion in Heteroepitaxially Grown CuInSe2 on GaAs Substrates
ABSTRACTA series of CuInSe2 thin films of varying thicknesses were grown on both GaAs(001) substrates and nominally lattice-matched In0.29Ga0.71As (001) linearly graded buffers by MBE at 450°C. Transmission electron microscopy and high resolution x-ray diffraction measurements revealed the presence of a second phase with chalcopyrite symmetry strained to the CuInSe2 thin film in-plane lattice constant for CuInSe2 films grown on GaAs substrates. Further examination confirmed that the second phase possessed chalcopyrite symmetry. No second phase was observed in films grown on nearly lattice-matched In0.29Ga0.71As (001) linearly graded buffers. Secondary ion mass spectrometry confirmed the presence of interdiffusion from of Ga from the substrate into the CuInSe2layer. It is speculated that this diffusion is related to the state of stress due to heteroepitaxial misfit.