scholarly journals Full-scale testing of adhesively bonded timber-concrete composite beams

2021 ◽  
Vol 54 (5) ◽  
Author(s):  
Jens Frohnmüller ◽  
Jens Fischer ◽  
Werner Seim

AbstractThis paper presents new findings on adhesively bonded timber-concrete composites with prefabricated concrete parts. Hereby, timber and concrete are bonded solely with adhesive and no metallic connectors have been used. Because the achievement of a continuous bond proved to be a critical point in past studies, special attention is given to that issue. The application procedure of the adhesives is investigated in small-scale bond samples and the manufacturing process in full-scale composite beams with a span of 8 m and a comparatively new polymer mortar is used as adhesive as well as a common epoxy resin. Both adhesives proved to be suitable, although polymer mortars showed strong advantages in terms of applicability and bridging of gaps in comparison to the less viscous epoxy adhesive. The full-scale beams are tested under quasi-static and cyclic loading. The failure occurred more as a bending failure of the timber or compression failure of the concrete. A full bond could be achieved at all full-scale beams. Moreover, an analytical and a finite element model for the calculation of composite beams are presented and validated. It could be seen, that both deformation behavior and failure load are in good accordance with the test results.

Author(s):  
E Kara ◽  
A Kurşun ◽  
MR Haboğlu ◽  
HM Enginsoy ◽  
H Aykul

The joining techniques of lightweight and strong materials in the transport industry (e.g. automotive, aerospace, shipbuilding industries) are very important for the safety of the entire structure. In these industries, when compared with other joining methods, the use of adhesively bonded joints presents unique properties such as greater strength, design flexibility, and reduction in fuel consumption, all thanks to low weight. The aim of this study was the analysis of the tensile fatigue behavior of adhesively bonded glass fiber/epoxy laminated composite single-lap joints with three different specimen types including 30, 40 and 50 mm overlap lengths. In this study, composite adherents were manufactured via vacuum-assisted resin transfer molding and were bonded using Loctite 9461 A&B toughened epoxy adhesive. The effect of a surface treatment method on the bonding strength was considered and it led to an increment of about 40%. A numerical analysis based on a finite element model was performed to predict fatigue life curve, and the predicted results showed good agreement with the experimental investigation.


Author(s):  
Chris Bassindale ◽  
Xin Wang ◽  
William R. Tyson ◽  
Su Xu

Abstract In this work, the cohesive zone model (CZM) was used to examine the transferability of the crack tip opening angle (CTOA) from small-scale to full-scale geometries. The pipe steel STPG370 was modeled. A drop-weight tear test (DWTT) model and pipe model were studied using the finite element code ABAQUS 2017x. The cohesive zone model was used to simulate crack propagation in 3D. The CZM parameters were calibrated based on matching the surface CTOA measured from a DWTT finite element model to the surface CTOA measured from the experimental DWTT specimen. The mid-thickness CTOA of the DWTT model was in good agreement with the experimental value determined from E3039 and the University of Tokyo group’s load-displacement data. The CZM parameters were then applied to the pipe model. The internal pressure distribution and decay during the pipe fracture process was modeled using the experimental data and implemented through a user-subroutine (VDLOAD). The mid-thickness CTOA from the DWTT model was similar to the mid-thickness CTOA from the pipe model. The average surface CTOA of the pipe model was in good agreement with the average experimental value. The results give confidence in the transferability of the CTOA between small-scale specimens and full-scale pipe.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2217
Author(s):  
Bartosz Piątek ◽  
Tomasz Siwowski ◽  
Jerzy Michałowski ◽  
Stanisław Błażewicz

CFRP (carbon fiber reinforced polymer) strips are currently often used to strengthen reinforced concrete structures in flexure. In order to ensure effective strengthening, proper connection between FRP material and concrete structure is needed. CFRP strips can be applied passively (only by bonding to the concrete surface) or actively (by prestressing before bonding). In the case of passive strengthening, CFRP strips connecting by bonding to the surface along the strengthened element are usually sufficient. However, active (prestressing) CFRP strips should be additionally anchored at their ends. Anchoring of unidirectional CFRP strips to the reinforced concrete is difficult because of their weak properties in transverse directions. The paper presents a development of mechanical steel anchorages used in an active CFRP flexural strengthening system for reinforced concrete structures. The anchorages were made of steel plates connected to CFRP strips with steel rivets and epoxy adhesive. They were developed within series of tests on specimens from small-scale to full-scale tested in an axial tensile scheme. The paper describes successive modifications of the anchorages as well as the results of full-scale tests. The final version of the anchorage developed during the research had a tensile failure force of 185 kN, which is sufficient value for CFRP strengthening purposes.


Author(s):  
Marcelo Igor Lourenço ◽  
Theodoro Antoun Netto ◽  
Neilon Silva ◽  
João Carlos Plácido

Abstract This paper presents an experimental test program and numerical analyses conducted on aluminum alloy drill-pipes with two different geometries. Small-scale characterization tests were conducted to determine both the material mechanical properties and the fatigue SN curves. Full-scale fatigue tests of the components are also presented. A finite element model of the drill pipes, including the tool-joint region, was developed. The model simulates, through different load steps, the tool-joint hot assembly and the experimental loads in order to obtain the actual stress distribution during the full-scale tests. Maximum stress amplitude in the aluminum pipes was found to be coincident with the edge of the connector, at the same location where failure was observed in full-scale tests. The study revealed that such pipes present a complex stress state near their connection to the steel tool joints due to their geometry and the residual stresses induced during the assembly of the steel connectors onto the aluminum pipes. Finally, multi-axial fatigue models were calibrated with the results of the small-scale tests and applied to the stress-strain state obtained numerically. Theoretical predictions were correlated to full-scale fatigue test results.


Author(s):  
D.M. Seyedi ◽  
C. Plúa ◽  
M. Vitel ◽  
G. Armand ◽  
J. Rutqvist ◽  
...  

2014 ◽  
Vol 633-634 ◽  
pp. 659-664 ◽  
Author(s):  
Zong Tao Fang ◽  
De Yu Tang ◽  
Yan Hua Hu ◽  
Hu Li Niu

This paper focus on fatigue problem of submarine pipelines, four points bending full scale fatigue experiment were conducted on X65 pipelines butt joints specimens, utilizing pipeline full scale fatigue test machine developed by CNPC. Meanwhile contrast test was also carried out on small specimens. The results show that the fatigue strength of full scale welded joints is lower than the small scale joints. Owing to having no regard for the influence of residual stress and size effect, the small test would provide dangerous results. The fatigue property of full scale welded joints only meets the requirement of DNV C203 W3 curve, and meets the needs of DNV C203 F3 curve basically while not meet BS 7608 F2 curve’s requirements which relatively demand higher. Weld toe and geometric discontinuous near weld root is the weak point for the whole welded joints.


2000 ◽  
Vol 663 ◽  
Author(s):  
J. Samper ◽  
R. Juncosa ◽  
V. Navarro ◽  
J. Delgado ◽  
L. Montenegro ◽  
...  

ABSTRACTFEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project dealing with the bentonite engineered barrier designed for sealing and containment of waste in a high level radioactive waste repository (HLWR). It includes two main experiments: an situ full-scale test performed at Grimsel (GTS) and a mock-up test operating since February 1997 at CIEMAT facilities in Madrid (Spain) [1,2,3]. One of the objectives of FEBEX is the development and testing of conceptual and numerical models for the thermal, hydrodynamic, and geochemical (THG) processes expected to take place in engineered clay barriers. A significant improvement in coupled THG modeling of the clay barrier has been achieved both in terms of a better understanding of THG processes and more sophisticated THG computer codes. The ability of these models to reproduce the observed THG patterns in a wide range of THG conditions enhances the confidence in their prediction capabilities. Numerical THG models of heating and hydration experiments performed on small-scale lab cells provide excellent results for temperatures, water inflow and final water content in the cells [3]. Calculated concentrations at the end of the experiments reproduce most of the patterns of measured data. In general, the fit of concentrations of dissolved species is better than that of exchanged cations. These models were later used to simulate the evolution of the large-scale experiments (in situ and mock-up). Some thermo-hydrodynamic hypotheses and bentonite parameters were slightly revised during TH calibration of the mock-up test. The results of the reference model reproduce simultaneously the observed water inflows and bentonite temperatures and relative humidities. Although the model is highly sensitive to one-at-a-time variations in model parameters, the possibility of parameter combinations leading to similar fits cannot be precluded. The TH model of the “in situ” test is based on the same bentonite TH parameters and assumptions as for the “mock-up” test. Granite parameters were slightly modified during the calibration process in order to reproduce the observed thermal and hydrodynamic evolution. The reference model captures properly relative humidities and temperatures in the bentonite [3]. It also reproduces the observed spatial distribution of water pressures and temperatures in the granite. Once calibrated the TH aspects of the model, predictions of the THG evolution of both tests were performed. Data from the dismantling of the in situ test, which is planned for the summer of 2001, will provide a unique opportunity to test and validate current THG models of the EBS.


2017 ◽  
Vol 893 ◽  
pp. 380-383
Author(s):  
Jun Xia ◽  
Z. Shen ◽  
Kun Liu

The tapered cross-section beams made of steel-concrete composite material are widely used in engineering constructions and their dynamic behavior is strongly influenced by the type of shear connection jointing the two different materials. The 1D high order finite element model for tapered cross-section steel-concrete composite material beam with interlayer slip was established in this paper. The Numerical results for vibration nature frequencies of the composite beams with two typical boundary conditions were compared with ANSYS using 2D plane stress element. The 1D element is more efficient and economical for the common tapered cross-section steel-concrete composite material beams in engineering.


2021 ◽  
Author(s):  
Grégory Alexandre Toguyeni ◽  
Jens Fernandez-Vega ◽  
Richard Jones ◽  
Martin Gallegillo ◽  
Joachim Banse

Abstract A solution to prevent liner wrinkling in Mechanically Lined Pipes (MLP) with a standard 3.0mm thick liner during reeling, without the use of pressurisation, has been developed in the form of the GluBi® lined pipe. The liner being adhesively bonded to the outer pipe, its integrity is maintained despite the global plastic strain applied by the installation method. This new linepipe product has been qualified for offshore use through testing accompanied by a detailed Finite Element Analysis programme to fully capture the pipe and adhesive behaviours under and range of temperatures and loading conditions. The objective of this analysis program was to investigate the reelability of the GluBi® pipe. The instalability was defined as the capability of the pipe to tolerate cyclic plastic deformation representative of a typical pipeline installation by reeling without the formation of wrinkling of the CRA liner, and to maintain the integrity of the adhesive layer, particularly near the weld overlay at the pipe ends. Important areas of the GluBi® pipe design are the pipe extremities, particularly the transition between the liner and the weld overlay length. A detailed Finite Element model of the pipe was created. It captured all stages of the pipe manufacturing: pipe lining, hydrostatic expansion, adhesive curing, overlay weld deposition and reeling simulation. The pipe modelled was 312.1mm OD × 19.7mm WT SMLS 450 with a nominal 3.0mm thick Alloy 625 liner. An important validation work was performed to obtain a precise material response of the adhesive layer between liner and outer pipe. The adhesive mechanical properties were thus assessed in shearing and peeling over a range of temperatures covering all possible manufacturing and installation conditions. The model's elements and adhesive property modelling were validated against physical test results. Sensitivity analyses were done on the adhesive curing temperature, the geometry of the adhesive transition between the liner and the overlay weld at the pipe ends and on the liner thickness. The model was subjected to reeling simulation corresponding to Subsea 7's reel-lay vessels. The liner's integrity post reeling was assessed according to a range of acceptance criteria. These studies made it possible to establish parameter ranges for the safe installation of the linepipe.


Sign in / Sign up

Export Citation Format

Share Document