scholarly journals Pulsed Magnetic Field Treatment of TiAlSiN Coated Milling Tools For Improved Cutting Performances

Author(s):  
Hao Qu ◽  
Lin Zhang ◽  
Zhe Chen ◽  
Lei Zhang ◽  
Kyle Jiang ◽  
...  

Abstract In this study a pulsed magnetic treatment was attempted to improve the cutting performance of the TiAlSiN coated WC-12wt%Co cemented carbide end mills and the effects of the strength of the pulsed magnetic field on the cutting forces, the cutting vibrations, the tool wear, the machined surface roughness and mechanical properties were investigated. It is found that the cutting performances of the coated tools are successfully improved with a relatively lower cutting force and less wear area. The average resultant cutting force Fxyave decrease by 14.53% in the last machining process when the optimum processing parameters of 0.5T magnetic field is used, accompanying a maximum decrease of 46.8% in the cutting vibration. The maximum reductions of 57.65% and 25.4% in the flank wear and the average surface roughness of the workpiece are obtained respectively after the treatment. Both the hardness and toughness of the cemented carbides are slightly improved with the imposition of the field. The improvements in the cutting performance of the tool are attributed to the enhanced adhesion strength between the coating and matrix, which is caused by the increased compressive residual stress induced by the PMT.

2016 ◽  
Vol 862 ◽  
pp. 26-32 ◽  
Author(s):  
Michaela Samardžiová

There is a difference in machining by the cutting tool with defined geometry and undefined geometry. That is one of the reasons of implementation of hard turning into the machining process. In current manufacturing processes is hard turning many times used as a fine finish operation. It has many advantages – machining by single point cutting tool, high productivity, flexibility, ability to produce parts with complex shapes at one clamping. Very important is to solve machined surface quality. There is a possibility to use wiper geometry in hard turning process to achieve 3 – 4 times lower surface roughness values. Cutting parameters influence cutting process as well as cutting tool geometry. It is necessary to take into consideration cutting force components as well. Issue of the use of wiper geometry has been still insufficiently researched.


2018 ◽  
Vol 8 (8) ◽  
pp. 1353
Author(s):  
Tao Chen ◽  
Fei Gao ◽  
Suyan Li ◽  
Xianli Liu

Carbon fiber reinforced plastic (CFRP) is typically hard to process, because it is easy for it to generate processing damage such as burrs, tears, delamination, and so on in the machining process. Consequently, this restricts its wide spread application. This paper conducted a comparative experiment on the cutting performance of the two different-structure milling cutters, with a helical staggered edge and a rhombic edge, in milling carbon fiber composites; analyzed the wear morphologies of the two cutting tools; and thus acquired the effect of the tool structure on the machined surface quality and cutting force. The results indicated that in the whole cutting, the rhombic milling cutter with a segmented cutting edge showed better wear resistance and a more stable machined surface quality. It was not until a large area of coating shedding occurred, along with chip clogging, that the surface quality decreased significantly. At the stage of coating wear, the helical staggered milling cutter with an alternately arranged continuous cutting edge showed better machined surface quality, but when the coating fell off, its machined surface quality began to reveal damage such as groove, tear, and fiber pullout. Meanwhile, burrs occurred at the edge and the cutting force obviously increased. By contrast, for the rhombic milling cutter, both the surface roughness and cutting force increased relatively slowly.


Magnesium alloys have a tremendous possibility for biomedical applications due to their good biocompatibility, integrity and degradability, but their low ignition temperature and easy corrosive property restrict the machining process for potential biomedical applications. In this research, ultrasonic vibration-assisted ball milling (UVABM) for AZ31B is investigated to improve the cutting performance and get specific surface morphology in dry conditions. Cutting force and cutting temperatures are measured during UVABM. Surface roughness is measured with a white light interferometer after UVABM. The experimental results show cutting force and cutting temperature reduce due to ultrasonic vibration, and surface roughness decreases by 34.92%, compared with that got from traditional milling, which indicates UVABM is suitable to process AZ31B for potential biomedical applications.


Author(s):  
Tao Chen ◽  
Weijie Gao ◽  
Guangyue Wang ◽  
Xianli Liu

Torus cutters are increasingly used in machining high-hardness materials because of high processing efficiency. However, due to the large hardness variation in assembled hardened steel workpiece, the tool wear occurs easily in machining process. This severely affects the machined surface quality. Here, we conduct a research on the tool wear and the machined surface quality in milling assembled hardened steel mold with a torus cutter. The experimental results show the abrasive wear mechanism dominates the initial tool wear stage of the torus cutter. As the tool wear intensifies, the adhesive wear gradually occurs due to the effect of alternating stress and impact load. Thus, the mixing effect of the abrasive and adhesive wears further accelerates tool wear, resulting in occurrence of obvious crater wear band on the rake face and coating tearing area on the flank face. Finally, the cutter is damaged by the fatigue wear mechanism, reducing seriously the cutting performance. With increase of flank wear, moreover, there are increasingly obvious differences in both the surface morphology and the cutting force at the two sides of the joint seam of the assembled hardened steel parts, including larger height difference at the two sides of the joint seam and sudden change of cutting force, as a result, leading to decreasing cutting stability and deteriorating seriously machined surface quality.


2021 ◽  
Author(s):  
Lin Tang ◽  
Xingchen Ge ◽  
Chengjin Shi ◽  
Lifeng Zhang ◽  
Kaige Zhai

Abstract Aiming at the problem of poor surface quality of multi-stage inner conical hole parts in electrochemical machining, a hydraulic self driving rotating magnetic field assisted electrochemical machining method is proposed, a hydraulic self driving rotating flow field model is established and simulated, and the structure of cathode tail blades is optimized. The simulation results show that when the number of cathode blades is 3 and the thickness of blades is 0.8mm, When the electrolyte flow rate is not less than 5m/s, the impeller at the tail of the cathode mandrel can rotate stably. A hydraulic self driving rotating magnetic field assisted electrochemical machining cathode is designed. When the machining voltage is 10V, the electrolyte temperature is 30 ℃, the electrolyte pressure is 1.6Mpa, the cathode feed speed is 5mm / min, and the electrolyte is 5%NaCl+16%NaNO3+4%NaClO3 composite electrolyte, the comparative experimental study of multi-stage inner conical hole electrochemical machining process with and without rotating magnetic field is carried out, The results show that the surface roughness of the workpiece without magnetic field is Ra0.847μm under the same processing parameters . With the addition of rotating magnetic field, the surface roughness of the workpiece is Ra0.437μm. The surface quality was improved by 48.41%.


2011 ◽  
Vol 110-116 ◽  
pp. 1630-1636
Author(s):  
Tadahiro Wada ◽  
Kazuki Hiro ◽  
Nakanishi Jun

In the turning of a shaft with a step of specified corner R, it is important whether the corner radiuses of the turning insert is the same as the specified corner R or lower than it. A turning tool with a large corner radius cannot adapt to cutting a shaft with a step of specified corner R. In this study, the surface roughness, cutting force, and tool wear were experimentally investigated in order to clarify the cutting performance of the turning insert with a three-arcs-shaped finishing edge. The machined surface of the insert with a three-arcs-shaped finishing edge was better than that of the normal insert. The wear progress of the insert with an arc-shaped finishing edge was slightly slower than that of the normal insert. The cutting force of the insert with an arc-shaped finishing edge was almost the same as that of the normal insert.


2021 ◽  
Vol 1047 ◽  
pp. 62-67
Author(s):  
Shen Wang ◽  
Le Tong ◽  
Guang Jun Chen ◽  
Mao Xun Wang ◽  
Bin Dai ◽  
...  

7075 aluminum alloy is widely used due to its great performance, especially in aerospace area. In this paper, ultrasonic-assisted grinding technology is used to process 7075 aluminum alloy. The data is obtained through experiments, and the surface roughness and morphology of ultrasonic assisted grinding and conventional grinding under different spindle speeds, feed rates, and amplitudes are analyzed. Research has found that the increase in spindle speed and amplitude will improve the quality of the machined surface and reduce the surface roughness by 82.1% and 36%. However, with the increase of feed rate, the surface quality decreased significantly, and the surface roughness increased by 55.6%. The surface micro-morphology of the machined workpiece is observed, and the effects of different processing parameters on the surface micro-morphology are obtained.


Author(s):  
Rajkeerthi E ◽  
Hariharan P

Abstract Surface integrity of micro components is a major concern particularly in manufacturing industries as most geometry of the products must meet out necessary surface quality requirements. Advanced machining process like electrochemical micro machining possess the capabilities to machine micro parts with best surface properties exempting them from secondary operations. In this research work, different electrolytes have been employed for producing micro holes in A286 super alloy material to achieve the best surface quality and the measurement of surface roughness and surface integrity to evaluate the machined surface is carried out. The machined micro hole provides detailed information on the geometrical features. A study of parametric analysis meant for controlling surface roughness and improvement of surface integrity has been made to find out the suitable parameters for machining. The suitability of various electrolytes with their dissolution mechanism and the influence of various electrolytes have been thoroughly studied. Among the utilized electrolytes, EG + NaNO3 electrolyte provided the best results in terms of overcut and average surface roughness.


Author(s):  
Jun'ichi Kaneko ◽  
Yuki Okuma ◽  
Shumpei Sugita ◽  
Takeyuki Abe

Abstract In machining process for a workpiece with low rigidity such as a blade shape, it is required to consider elastic deformation of the workpiece shape itself due to cutting force. Conventionally, reduction of the cutting force in machining process is achieved by optimization of feed rate value in NC program. On the other hand, since a decrease in the feed rate causes an increase in machining time. So, other optimization algorithm is required. In this paper, a new method to suppress the elastic deformation of the workpiece by changing tool posture in multi-axis controlled machining is proposed. The proposed method is intended for finish machining process for blade shape with a ball end mill. In the proposed method, first, the cutting force loaded on the workpiece surface in a certain posture candidate is predicted, and an instantaneous cutting force at the moment when the machining surface is generated is estimated by model-based computer simulation. Based on this results, the amount of elastic deformation on the machined surface is estimated by FEM. This process is repeated at each cutter location and tool posture candidate, and the new tool posture that can minimize machining error caused by the elastic deformation is determined at each cutter location.


2008 ◽  
Vol 53-54 ◽  
pp. 51-55 ◽  
Author(s):  
Xiu Hong Li ◽  
Shi Chun Yang

A new finishing technology of the swirling air flow compounded with magnetic-field is advanced. Force acting on abrasive is analyzed by the action of airstream and magnetic-field coupling according to gas-solid particles two-phase flow. Finishing mechanism on the swirling air flow compounded with magnetic-field is illustrated, namely, burrs and microcosmic peak on the surface of workpiece are broken, grinded and cut via a great deal of abrasive particle impacting, microchipping and rolling machined surface. Unthreaded hole is experimented on the condition of changing magnetic induction intensity B and machining time t. Changing curve of surface roughness Ra along with time t is shown. Research indicates that machining time of the swirling air flow compounded with magnetic-field is short and machining efficiency is high. The longer machining time is, the smaller surface roughness Ra is and the better machining effect is.


Sign in / Sign up

Export Citation Format

Share Document