scholarly journals Effect of Elevated Medium Sucrose Levels on Cold Hardiness of `Festival' Red Raspberry in Vitro

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 850D-850
Author(s):  
Pauliina Palonen ◽  
Danielle Donnelly ◽  
Deborah Buszard

Low tissue-water content and increased osmotic concentration of cell sap are associated with frost resistance. Changes in total osmotic concentration of cell sap are due mainly to changes in concentration of sugars. Generally, sugar content increases with hardening and decreases with dehardening. This study examined the effect of elevated sucrose levels (3% to 15%) in the medium on the cold hardiness of `Festival' red raspberry (Rubus idaeus L.) shoots in vitro. To determine whether expected hardening is caused by elevated sucrose levels or by osmotic stress, different levels of mannitol in the media have been tested. After growing raspberry shoots on media with different levels of sucrose and mannitol for 2 weeks, shoot moisture content (percent) was determined. Cold hardiness of the shoots was determined by using differential thermal analysis or artificially freezing the shoots and assessing the survival by regrowth test and visual rating.

HortScience ◽  
1993 ◽  
Vol 28 (7) ◽  
pp. 740-741 ◽  
Author(s):  
Annette M. Zatylny ◽  
J.T.A. Proctor ◽  
J.A. Sullivan

Two selections and two cultivars of red raspberry (Rubus idaeus L.) were evaluated for cold hardiness in vitro. Tissue-cultured shoots were exposed to temperatures from 0 to –18C and samples were removed at 2C intervals. Injury was assessed by a visual rating of tissue browning after freezing. Only shoots subjected to step-wise acclimation at low temperatures before freezing revealed significant differences among the four types in the lowest shoot survival temperature. Acclimation treatments increased the lowest survival temperatures of in vitro shoots by a mean of 3.1C. The hardiness obtained from this screening method agreed with that of winter survival in the field. Ranking, from the most to least cold hardy, was `Boyne', Gu 72, Gu 63, and `Comox'.


2000 ◽  
Vol 125 (4) ◽  
pp. 429-435 ◽  
Author(s):  
Leena Lindén ◽  
Pauliina Palonen ◽  
Mikael Lindén

Seasonal cold hardiness of red raspberry (Rubus idaeus L.) canes was measured by freeze-induced electrolyte leakage test and visual rating of injury. Leakage data were transformed to percentage-adjusted injury values and related to lethal temperature by graphical interpolation and by the midpoint (T50) and inflection point (Tmax) estimates derived from three sigmoid (the logistic, Richards, and Gompertz) functions. Tmax estimates produced by Richards and Gompertz functions were corrected further using two different procedures. The 10 leakage-based hardiness indices, thus derived, were compared to lethal-temperature estimates based on visual rating. Graphical interpolation and Tmax of the logistic or T50 of the Gompertz function yielded lethal-temperature estimates closest to those obtained visually. Also, Tmax values of the Gompertz function were well correlated with visual hardiness indices. The Richards function yielded hardiness estimates deviating largely from visual rating. In addition, the Richards function displayed a considerable lack of fit in several data sets. The Gompertz function was preferred to the logistic one as it allows for asymmetry in leakage response. Percentage-adjusted injury data transformation facilitated curve-fitting and enabled calculation of T50 estimates.


2006 ◽  
Vol 131 (2) ◽  
pp. 209-213 ◽  
Author(s):  
Pauliina Palonen ◽  
Leena Lindén

`Maurin Makea', `Muskoka', ` Ottawa', and `Preussen' red raspberry (Rubus idaeus L.) canes were collected from the field and subjected to different hot water treatments (20, 35, 40, 45, and 50 °C) to determine if endodormancy could be removed by a near lethal stress. Estimation of days for 50% budbreak (DD50) was found useful for describing the state of bud dormancy in the samples. Bud dormancy was broken in `Ottawa' by immersing the canes in 45 °C water for 2 hours, in `Maurin Makea' by treating the canes in 40 °C water, and in `Preussen' by both 40 and 45 °C treatments. The influence of this treatment on dormancy and cold hardiness at different times of the winter was further examined using `Ottawa' raspberry. The treatment removed bud dormancy most effectively in October, when the samples were in deepest dormancy. A slight effect was observed in November, but no effect in January. During ecodormancy in February the treatment delayed budbreak. Hot water treatment reduced cold hardiness of `Ottawa' canes by 8 to 15 °C, and that of buds by 9 to 13 °C during both endo- and ecodormancy. Based on the capacity of buds and canes to reacclimate, recovery from the stress treatment was possible at temperatures ≥4 °C. Loss of cold hardiness was caused by high treatment temperature itself and was not related to breaking of dormancy in samples. This finding suggests that dormancy and cold hardiness are physiologically unconnected in raspberry.


1993 ◽  
Vol 73 (4) ◽  
pp. 1105-1113 ◽  
Author(s):  
Ribo Deng ◽  
Danielle J. Donnelly

Micropropagated shoots of red raspberry (Rubus idaeus L. ’Comet’) were rooted on modified Murashige-Skoog medium lacking sucrose, in specially constructed plexiglass chambers, under ambient (340 ± 20 ppm) or enriched (1500 ± 50 ppm) CO2 and ambient (ca. 100%) or reduced (90 ± 5%) relative humidity. Cultured plantlets were evaluated for their survival, rooting and relative vigor, leaf and root number, stem and root length, total leaf area, total fresh and dry weight, gas exchange rate, and stomatal features, prior to transplantation to soil and at intervals for 6 wk ex vitro. In vitro CO2 enrichment promoted plantlet growth, rooting and both the survival and early growth of transplants. CO2 enrichment increased stomatal aperture of plantlet leaves but did not apparently increase water stress at transplantation. Reduced in vitro RH did not affect plantlet growth but decreased stomatal apertures and stomatal index on leaves of cultured plantlets and promoted both the survival and early growth of transplants. In vitro CO2 and RH levels did not affect the photosynthetic rate of either plantlets or transplants. Only the stomata on leaves of plantlets from the ambient CO2 and reduced RH treatment were functional. Normal stomatal function was not observed in persistent leaves of transplants from the other treatments, even 2 wk after transplantation. In vitro CO2 enrichment acted synergistically with RH reduction in improving growth of plantlets both in vitro and ex vitro. Hardened red raspberry plantlets obtained through CO2 enrichment and RH reduction survived direct transfer to ambient greenhouse conditions without the necessity for specialized ex vitro acclimatization treatment. Key words: Acclimatization, growth analysis, photosynthesis, Rubus idaeus L., stomata, tissue culture


1999 ◽  
Vol 124 (4) ◽  
pp. 341-346 ◽  
Author(s):  
Pauliina Palonen ◽  
Leena Lindén

Canes and flower buds of selected red raspberry cultivars (Rubus idaeus L. `Maurin Makea', `Muskoka', and `Ottawa') were sampled from a field (latitude, 61 °20'N; longitude, 24 °13'E) at 1-month intervals during Winter 1996-97 to study the interaction of dormancy and cold hardiness, hardiness retention, and rehardening capacity. One set of canes was subjected to dehardening (3 days) and two sets to dehardening + rehardening (3 and 7 days) treatments before cold hardiness determination. Maximum midwinter hardiness occurred in January, after breaking of endodormancy. Cold hardiness of canes and buds reached -28.6 to -37.2 °C and -24.2 to -31.6 °C, respectively. Throughout the winter, raspberry canes were hardier than buds. Endodormancy had a greater influence on dehardening and rehardening in buds than in canes, and cultivars differed in their response. Dehardening of `Maurin Makea' canes and buds, and `Muskoka' buds was slightly enhanced by breaking of dormancy, whereas dehardening in `Ottawa' was not affected by dormancy. Raspberry canes and buds could reharden even after dormancy release. Rehardening capacity was affected by the state of dormancy only in `Maurin Makea' buds. Changes in dormancy status failed to explain cultivar differences regarding dehardening and the capacity to reharden suggesting other factors may be involved.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 471E-471
Author(s):  
Gerson R. de L. Fortes ◽  
Luciana B. Andrade ◽  
Marisa de F. Oliveira ◽  
Nilvane T.G. Müller ◽  
Janine T. C. Faria

The potato cultivar Cristal has recently been released by the CPACT/EMBRAPA Breeding Program. Such cultivar was selected for having high dry matter and low sugar content, which makes it desirable for the chip industry. However, this is a recalcitrant cultivar as far as in vitro multiplication is concerned. The aim of this work was to improve the rate of multiplication for this cultivar when it was submitted to different MS salt and sucrose concentrations in the culture media. Two-bud microcuttings were inoculated in test tubes (20 × 150) mm with 10 ml MS media at 3/4-, 1/2-, and full-strength and MS vitamins added to: myo-inositol (100 mg·L–1), agar (7.0 g·L–1) and sucrose as follows: 10, 20 and 30 g·L-1. Each treatment was repeated eight times and each replicate had eight explants. After inoculation the whole material was kept in a growth room at 25 ± 2°C, 16-hr photoperiod and 2000 lux. The evaluation was done 35 days later. It was found and increase in the number of buds as the sucrose concentration in the media decreased. As far as MS salts are concerned no difference in bud number was observed. The rate of multiplication was slightly higher for MS media at full strength and sucrose at low concentration (10 g·L–1). This treatment could be recommended for this cultivar.


2019 ◽  
Vol 9 (3) ◽  
pp. 402-405
Author(s):  
L. P. Khlebova ◽  
A. Mu. Titova ◽  
A. V. Pirogova

Rubus idaeus L. is one of the oldest and most widespread berry crops, which is cultivated for the excellent taste as well as for medical and dietary properties of berries. Rubus fruits contain a significant amount of vitamins A and C, anthocyanins, polyphenolic substances, which determines their high antioxidant activity. Remontant red raspberry forms are able to berry on annual shoots in the second half of summer, which extends the term of consumption of fresh berries by 1.5-2 months. However, many forms of remontant raspberry have a low potential for vegetative propagation compared to summer varieties, which makes them difficult to reproduce and to use in the breeding process. We investigated the possibility of increasing the efficiency of in vitro micropropagation of a remontant raspberry variety ʻBiryulevskaya’. The effects of 6-benzylaminopurine (6-BAP) at concentrations of 0.5–3 mg l-1 and thidiazuron (TDZ) at concentrations of 0.05–0.2 mg l-1 as well as doubled and tripled iron chelate Fe-EDTA (Ferric ethylenediamine-tetraacetic acid) doses were studied. We found the adding 1.0 mg l-1 6-BAP to the MS medium containing a triple dose of iron chelate, provided intensive proliferation of high quality adventitious shoots.


Author(s):  
Doina CLAPA ◽  
Monica HÂRȚA ◽  
Cornel Viorel POP

Temporary Immersion Bioreactor (TIB) is a suitable technique for large scale micropropagation of plant species. The aim of this work was to test the capacity of in vitro proliferation of the primocane-fruiting red raspberry cv Maravilla and floricane-fruiting red raspberry cv Willamette on gelled media compared to liquid media. The two varieties were cultured in vitro on two media, Murashige and Skoog 1962 (MS) and Driver and Kuniyuki walnut medium, 1984 (DKW), both supplemented with 0.5 mg/l 6-benzyladenine (BA). In the control cultures on gelled media the media were gelled with 5g/l Plant Agar, whereas for the cultures in liquid media Plantform bioreactors were used. After six weeks of in vitro culture we recorded the proliferation rates and lengths of the axillary shoots obtained in all the experimental treatments. The highest proliferation rate was 16 ± 2.03, obtained in cv. Willamette on gelled MS medium with 0.5 mg/l BA. The longest shoots (3.17 ± 0.32 cm) were obtained at cv. Maravilla on the DKW medium with 0.5 mg / l BA in the bioreactor. Our research highlighted that Rubus idaeus L. Maravilla and Willamette can be TIB propagated, although further research is needed to improve the efficiency of this method.


1996 ◽  
Vol 121 (3) ◽  
pp. 495-500 ◽  
Author(s):  
Annette M. Zatylny ◽  
J.T.A. Proctor ◽  
J.A. Sullivan

Tissue survival assessments of red raspberry (Rubus idaeus L.), including cane dieback, bud death, time of cane leaf drop, and growth cessation, were compared to freezing tests of stem portions and buds. Four named cultivars and six Guelph (designated Gu) selections were assessed in the field at two locations in each of two winters and in concurrent controlled freezing tests at one location for one winter. The time of cane leaf drop and of cessation of cane extension growth in the fall were not correlated with field survival. Cane dieback as a percentage of cane length was a better estimate of winter survival than was bud number. Controlled freezing tests of stem portions and buds, and calculation of T40s and T50s indicate that genotypes differed in their relative hardiness throughout the winter. The different methods of field assessment of cold hardiness were well correlated, but not well correlated with controlled freezing tests (4.2% significant correlations). Exclusion of the genotype, Gu 75, which behaved differently in the field than in freezing tests, increased the number of significant correlations to 16.7%.


Sign in / Sign up

Export Citation Format

Share Document