scholarly journals Photocatalytic degradation of hydrocarbons and methylene blue using floatable titanium dioxide catalysts in contaminated water

Author(s):  
T. Schnabel ◽  
N. Jautzus ◽  
S. Mehling ◽  
C. Springer ◽  
J. Londong

Abstract Photocatalytic disintegration is a novel approach to eliminate pollution. The method utilizes the semiconductor titanium dioxide to degrade organic molecules in the presence of ultraviolet (UV) light. In this study, it is shown how the capabilities of several types of catalyst designs degrade the non-polar substance diesel fuel and the polar substance methylene blue. The floating design of foam glass coated with titanium dioxide could reduce the concentration of diesel fuel by 329 mg/L in 16 h; the submerged designs for coated glass fiber and coated steel grit could reduce methylene blue concentration by 96.6% after 4 h and 99.1% after 6 h, respectively. It could be shown that photocatalysis is a promising cost- and energy-efficient method for managing air and water pollution. It can be established as a low-technology method without requiring the use of a conventional source of energy, given an adequate amount of sun hours, or as an additional cleaning stage in water treatment plants using UV-LEDs.

2020 ◽  
Vol 979 ◽  
pp. 175-179
Author(s):  
M. Nagalakshmi ◽  
N. Anusuya ◽  
S. Karuppuchamy

Titanium dioxide (TiO2) nanoparticles have been successfully prepared by biological method and the resulting material was characterized by XRD, FTIR, SEM, EDAX and UV-Vis spectroscopy. The synthesized TiO2 materials successfully degraded the methylene blue dye (MB) under UV light irradiation.


2013 ◽  
Vol 641-642 ◽  
pp. 11-17 ◽  
Author(s):  
Zhi Peng Meng ◽  
Fu Xin Zhong ◽  
Dan Yu Wang ◽  
Zhong Ming Zhang ◽  
Hua Ying Li ◽  
...  

This paper presents a novel approach for preparing titanium dioxide nanotube arrays (TNTs) loaded with highly dispersed Br through an ultrasound aided photochemical route. The content of Br doped on the arrays was controlled by changing the concentration of NaBr and the ultrasound time. The Br doped TiO2nanotube arrays were characterized by SEM, XRD and UV–Vis spectrum. Doping the bromine did not basically affect the morphology of the surface of the TNTs, but part of the anatase phase transformed into rutile phase, which led to the formation of the mixed crystal and increased the photocatalytic activity. The results showed that Br doping significantly enhanced the photocatalytic degradation rate of titanium dioxide nanotube arrays under UV-light irradiation. The main factors which affected photocatalytic degradation of sugar wastewater were the illumination time and pH. The results showed that the longer the exposure time was, the initial pH of wastewater was more favorable to photocatalytic degradation of the sugar wastewater for the Br-TiO2nanotube arrays, and compared to undoped TiO2nanotube arrays Br doped TiO2nanotube arrays had better photocatalytic properties.


2020 ◽  
Vol 4 (3) ◽  
pp. 148-153
Author(s):  
Moses Titus Yilleng ◽  
Moses Sunday ◽  
Doctor Stephen

Titanium dioxide has proven to be one of the most promising heterogeneous catalyst. This work explores the photocatalytic activity of modified titanium dioxide. Nitrogen was incorporated into mesoporous TiO2 using Sol-gel method. The N-TiO2 was characterized using X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM) thermogravimetric analysis (TGA), and U-Vis diffuse reflectance spectroscopy (DRS). 1%wtN-TiO2 expresses the highest photoactivity in UV light compared to 3%wtN-TiO2 and 5%wt N-TiO2 respectively. The photodegradation efficiency of the catalyst follows the following trend 1%wtN-TiO2 >3%wtN-TiO2 >5%wtN-TiO2>PURE-TiO2. The results obtained from the kinetics investigation shows the following trends 1%wtN-TiO2 is 0.049 s-1, 3%wtN-TiO2 is 0.0289 s-1, 5%wtN-TiO2 is 0.0143 s-1, and the PURE-TiO2 is 0.0118 s-1. The consistency in the rate constant values of the phodegradation of methylene blue; it clearly showed that the reaction follows a pseudo-first order kinetics.


A simple method for the preparation of a catalyst membrane from natural rubber with titanium dioxide and zeolite A was presented in this work. This simple method was based on the mixing TiO2 suspension (anatase phase), zeolite suspension in NH4OH with natural rubber latex and subsequently casting the mixture into membrane followed by drying at 50o¬¬C. The characteristics of the composite membrane was studied by using scanning electron microscopy (SEM), X-ray diffractometer (XRD) techniques and mechanical properties measurements. The photocatalytic activity of the HANR/TiO2/ZA was evaluated using methylene blue (MB) as a model for organic dye pollutant in water. The results showed that the catalyst membrane prepared with a small amount of TiO2 together with Zeolite A could rapidly degrade MB dye solution in water under UV light irradiation. The effect of amount of Zeolite A on the degradation of MB was also investigated. Furthermore, we evaluated the reusability of the membrane and the result showed that the catalytic ability of the membrane on MB degradation decreased a little. The mechanical property of the catalyst membrane was slightly decreased after recycling.


2014 ◽  
Vol 28 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Seema Singh ◽  
Aniket Chaki ◽  
Devesh Pratap Chand ◽  
Avinash Raghuwanshi ◽  
Pramod Kumar Singh ◽  
...  

The commercialization of titanium dioxide-based heterogeneous photocatalysis continues to suffer from various limitations, the major shortcoming being the costly and time consuming post-treatment separation of very fine titanium dioxide particles. In order to eliminate this major hindrance, immobilization of titanium dioxide particles on various substrates continues to be an active area of research. In this work, polystyrene-supported titanium dioxide photocatalyst was prepared using a facile method. The photocatalytic activity of the developed photocatalysts was investigated by photodegradation of aqueous solutions of methylene blue andmethyl orange dyes under UV light for 24 h under non-stirred conditions. The recovery and reuse of the prepared photocatalysts was also investigated. The maximum percentage degradation of methyl orange and methylene blue dyes by the developed photocatalysts was found to be around 60 % and 66 % respectively. The ease of separation after use in addition to a facile, low cost-based method of fabrication and appreciable photocatalytic activity of the developed photocatalyst makes it a promising candidate to be explored further for large scale applications.DOI: http://dx.doi.org/10.3329/jce.v28i1.18103 Journal of Chemical Engineering, Vol. 28, No. 1, December 2013: 9-13 


2021 ◽  
Vol 78 (5) ◽  
pp. 2849-2865
Author(s):  
Bircan Haspulat Taymaz ◽  
Recep Taş ◽  
Handan Kamış ◽  
Muzaffer Can

Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 117
Author(s):  
Zahir Muhammad ◽  
Farman Ali ◽  
Muhammad Sajjad ◽  
Nisar Ali ◽  
Muhammad Bilal ◽  
...  

Degradation of organic dyes and their byproducts by heterogeneous photocatalysts is an essential process, as these dyes can be potentially discharged in wastewater and threaten aquatic and xerophyte life. Therefore, their complete mineralization into nontoxic components (water and salt) is necessary through the process of heterogeneous photocatalysis. In this study, Zr/CrO2 (Zirconium-doped chromium IV oxide) nanocomposite-based photocatalysts with different compositions (1, 3, 5, 7 & 9 wt.%) were prepared by an environmentally friendly, solid-state reaction at room temperature. The as-prepared samples were calcined under air at 450 °C in a furnace for a specific period of time. The synthesis of Zr/CrO2 photocatalysts was confirmed by various techniques, including XRD, SEM, EDX, FT-IR, UV-Vis, and BET. The photocatalytic properties of all samples were tested towards the degradation of methylene blue and methyl orange organic dyes under UV light. The results revealed a concentration-dependent photocatalytic activity of photocatalysts, which increased the amount of dopant (up to 5 wt.%). However, the degradation efficiency of the catalysts decreased upon further increasing the amount of dopant due to the recombination of holes and photoexcited electrons.


Sign in / Sign up

Export Citation Format

Share Document