scholarly journals Mechanical and corrosion properties of AlCu matrix hybrid composite materials

2019 ◽  
Vol 51 (1) ◽  
pp. 81-92 ◽  
Author(s):  
Serkan Islak

In this study, AlCu matrix hybride composites with various ratios of boron carbide (B4C), hexagonal boron nitride (hBN), and graphite (Gr) were produced by using hot-pressing method. The microstructure, density, mechanical and corrosion properties of these composites were investigated. Optical microscopy, scanning electron microscopy, and X-ray diffraction were used to characterize the microstructures, and the experimental densities of the composites were measured using a helium pycnometer. The mechanical properties including the hardness and transverse rupture strength were investigated using hardness and three-point bending tests, respectively. In addition, the hybrid composites were immersed in an aqueous solution of 3.5 wt.-percent NaCl at pH 3 for potentiodynamic and corrosion rate measurements. These tests revealed that a microstructure in which reinforcing particles are almost homogeneously dispersed in the matrix was obtained. Density measurements have shown that very dense and compact hybrid AMCs are produced. The hardness and transverse rupture strength of the composites were significantly increased by particulate addition to the matrix. Depending on the type and amount of reinforcement material, differences in the corrosion resistance of the hybrid composites have been determined. The results show that AlCu-8B4C-2Gr hybrid composite material has the highest corrosion resistance among the composite materials.

2020 ◽  
pp. 154-160
Author(s):  
Yu.A. Gribanov ◽  
I.V. Gurin ◽  
V.V. Gujda ◽  
A.N. Bukolov ◽  
V.V. Kolosenko

The corrosion resistance of carbon-carbon composite materials (C–C composites) was studied in a corrosive media of coolant NaF+ZrF4 salt (a model heat-transfer) at 700 °С in the air flow. It has been shown that C–C composite material is resistant to the model heat-transfer even under conditions of critical temperature accident. The main mechanism that leads to the C–C composite corrosion is a mechanism of composite material oxidation due to the contact with the air. The study has evidenced that the C–C composite burn-up rate well correlates with the pyrocarbon matrix content in the composite, the matrix content increase by 2530% results in the composite corrosion resistance increase by a factor of 2–4. So, by developing corrosion-resistant carbon-carbon composites one has a problem of finding an optimum fiber-matrix ratio in the composite. It has been confirmed experimentally that by silication of C–C composites with the use of the methods which were developed in NSC KIPT it is possible to increase the service life of products under simulated accident conditions by a factor of 7–7.5.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012033
Author(s):  
M Sadashiva ◽  
S Praveen Kumar ◽  
M K Yathish ◽  
V T Satish ◽  
MR Srinivasa ◽  
...  

Abstract The extensive applications of hybrid composite materials in the field of transportation and structural domine provide prominent advantages in the order of stiffness, strength even cost. However extend the advantages of hybrid campsites in several field such as aviation and marine even more additional properties should be inculcate in them. During production of such profitable composites poses some problems at time at decompose and processing. It’s better to develop environment friendly and reusable composites, bio hybrid composite materials such of the one. In this paper, focused on development of Eco-friendly hybrid bio composites with the ingredients of drumstick fibers, glass fiber along with polyester resin. This hybrid bio composites subjected to bending test and evaluate the characteristics of bending properties, this research evident that bending characteristics of hybrid composites with longitudinal fiber orientation better than transverse.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 167 ◽  
Author(s):  
Omid Khalaj ◽  
Ehsan Saebnoori ◽  
Hana Jirková ◽  
Ondřej Chocholatý ◽  
Jiří Svoboda

Fe–Al–O-based materials are currently undergoing a great deal of development because of their many special properties. However, lack of strength at high temperatures, limited ductility at ambient temperatures and corrosion resistance have hindered a wider application of these materials. Recently, a new Fe–Al-based oxide precipitation hardened (OPH) steel was developed by the authors to improve the mechanical properties and oxidation resistance. The new OPH alloys are produced by dissolving a specific amount of oxygen in the matrix during mechanical alloying followed by precipitation of fine dispersion of aluminum or yttrium oxides during hot consolidation. A series of tests was performed to evaluate the thermomechanical properties and corrosion resistance in a 3.5% NaCl solution. The results show improved corrosion resistance, as well as mechanical properties, while the production costs of this material are lower than for traditional materials.


2007 ◽  
Vol 534-536 ◽  
pp. 845-848 ◽  
Author(s):  
Leszek Adam Dobrzański ◽  
Anna Włodarczyk-Fligier ◽  
Marcin Adamiak

Investigation results of the heat treatment effect on the corrosion resistance of the EN AW-AlCu4Mg1 (A) aluminium alloy base composite materials reinforced with the Ti(C,N) particles with varying volume fractions are presented. Examinations were made of the EN AW-Al Cu4Mg1(A) aluminum alloy, and also of the composite materials with the matrix from this aluminium alloy. It was found out, basing on own research, that corrosion wear after the corrosion tests of the composite materials with the addition of 5% of the Ti(C,N) particles is smaller compared to the pure aluminium alloy. Precipitation hardening causes improvement of the corrosion resistance of the investigated composite materials and - like in the state before the heat treatment, materials with 5% portion of the Ti(C,N) reinforcement ratio are characteristic of more advantageous features compared to the material without the reinforcement.


2020 ◽  
Vol 8 (5) ◽  
pp. 3210-3214

Variety of application use fibre reinforced composites because of their intrinsic properties in mechanical strength, renewability and low production cost compared to conventional materials. Natural fibres are environmentally friendly their use will not break the budget when used as an alternative to the regular materials. Reinforcement used in polymer is either man-made or natural. Man-made synthetic, metallic, semi-synthetic, polymer fibres have superior specific strength but their high cost of production limits its application and feasibility to make composites. Recently there is a rise in use of natural fibres from various natural resources which are available abundantly. Composites based on natural fibres have their advantages of cost in making the fibres from different vegetables, wood, animals and minerals. In this work a thorough and systematic inquiry regarding better utilization of sisal fibre for making value-added products has been carried out. Various hybrid composite test specimens as per ASTM were prepared with natural fillers such as sisal-pineapple-Kenaf fibres by using hand layup method. The physical and mechanical characteristics of prepared hybrid composite with sisal fibre, pineapple fibre and kenaf fibre are the main objective the research. The various mechanical properties of the hybrid composites like tensile strength, rupture strength, impact strength, shear strength, hardness, and wear strength are studied by standard experiment methods. The experimental results were discussed. The experiments exposed that the use of sisal fibre when compared with similar fibres in a composite increase the most of the physical properties like tensile, rupture, wear properties of the material where as impact strength of the material is lowered. Surface morphology of the sisal fibre after tensile loading is studied microscopically.


Polimery ◽  
2021 ◽  
Vol 66 (1) ◽  
pp. 36-43 ◽  
Author(s):  
N. M. Z. Nik Baihaqi ◽  
A. Khalina ◽  
N. Mohd Nurazzi ◽  
H. A. Aisyah ◽  
S. M. Sapuan ◽  
...  

This study aims to investigate the effect of fiber hybridization of sugar palm yarn fiber with carbon fiber reinforced epoxy composites. In this work, sugar palm yarn composites were reinforced with epoxy at varying fiber loads of 5, 10, 15, and 20 wt % using the hand lay-up process. The hybrid composites were fabricated from two types of fabric: sugar palm yarn of 250 tex and carbon fiber as the reinforcements, and epoxy resin as the matrix. The ratios of 85 : 15 and 80 : 20 were selected for the ratio between the matrix and reinforcement in the hybrid composite. The ratios of 50 : 50 and 60 : 40 were selected for the ratio between sugar palm yarn and carbon fiber. The mechanical properties of the composites were characterized according to the flexural test (ASTM D790) and torsion test (ASTM D5279). It was found that the increasing flexural and torsion properties of the non-hybrid composite at fiber loading of 15 wt % were 7.40% and 75.61%, respectively, compared to other fiber loading composites. For hybrid composites, the experimental results reveal that the highest flexural and torsion properties were achieved at the ratio of 85/15 reinforcement and 60/40 for the fiber ratio of hybrid sugar palm yarn/carbon fiber-reinforced composites. The results from this study suggest that the hybrid composite has a better performance regarding both flexural and torsion properties. The different ratio between matrix and reinforcement has a significant effect on the performance of sugar palm composites. It can be concluded that this type of composite can be utilized for beam, construction applications, and automotive components that demand high flexural strength and high torsional forces.


2015 ◽  
Vol 763 ◽  
pp. 3-8 ◽  
Author(s):  
Noor Haznida Bakar ◽  
Koay Mei Hyie ◽  
Aidah Jumahat ◽  
Anizah Kalam ◽  
Z. Salleh

This study is about the hybrid composite which used the woven Kevlar, long Kenaf fibre, and unsaturated polyester as the matrix. It focused on the mechanical characterization and properties of hybrid composite. The hybrid composites were fabricated by treated and untreated kenaf fibre and Kevlar as reinforcement in unsaturated polyester matrix using hand lay-up process. Effect of 6wt% of sodium hydroxide (NaOH) on the hybrid composites were analyzed using X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) analysis. The tensile and impact performance of the samples were tested according to the standard ASTM D3039 and ASTM D3763, respectively. Based on scanning electron micrograph (SEM) morphological examination, it revealed that the interfacial adhesion between the fibre surface and polymer matrix were improved. The results proved that the alkaline treatment can help to improve the mechanical properties compared to the untreated kenaf fibre.


Author(s):  
Satyanarayana Kosaraju ◽  
Venu Gopal Anne ◽  
Swapnil Gosavi

Composite materials are important engineering materials due to their outstanding mechanical properties. Composite materials offer superior properties to conventional alloys for various applications as they have high stiffness, strength and wear resistance. The high cost and difficulty of processing these composites restricted their application and led to the development of reinforced composites. In the last two decades, wear studies on Particulate Metal Matrix Composites (PMMCs) reinforced with various reinforcements ranging from very soft materials like graphite, talc etc., to high hardened ceramic particulates like SiCp, Al2O3 etc., have been reported to be superior to their respective unreinforced alloys. Therefore, present work focused on the study of machinability of Al based binary composites reinforced with 8.5% SiC and Al based Hybrid composite reinforced with 8.5% SiC, 2% and 4% Graphite powder (Solid lubricant) have been studied by considering the effect of process parameters such as speed, feed, depth of cut and composition of material. Binary and hybrid composite materials have been casted by stir casting methodology. Experiments have been conducted using Design of Experiments approach to reduce the number of experiments and time. The cutting force and surface roughness in turning of both the binary and hybrid materials have been measured using cutting force dynamometer (4 component kistler dynamometer) and the roughness has been measured using surface roughness tester (Marsurf M400) simultaneously. The multi objective optimization has been carried out using Grey relational based Taguchi method. It was observed that feed was the most influencing factor compared to others factors and also results shown that the performance characteristics cutting force and the surface roughness are greatly enhanced by using Grey relational Analysis.


2021 ◽  
Vol 29 (9_suppl) ◽  
pp. S1386-S1402
Author(s):  
S Srikant Patnaik ◽  
Tarapada Roy

In the present work, a combination of experimental and numerical procedure is proposed to study the effects of different hygrothermal conditions on the creep strain, viscoelastic properties of nanocomposites, and mechanical properties of such nanocomposite-based carbon fiber–reinforced polymer (CFRP) hybrid composite materials. Ultrasonic probe sonicator is used to randomly disperse the multiwalled carbon nanotubes into an epoxy to minimize agglomerations. Dynamic mechanical analysis is employed to conduct the creep tests under different hygrothermal conditions of such nanocomposite samples. The Findley power law is used to obtain the long-term creep behavior of nanocomposite materials. Prony series is used to determine the viscoelastic properties of nanocomposite material in the frequency domain. Coefficient of moisture expansion (CME) is independent of moisture concentration; thus, CME of the nanocomposite is also determined. Strength of materials and Saravanos–Chamis micromechanics (SCM) have also been utilized to obtain the mechanical properties of such hybrid composite materials under different hygrothermal conditions. It has been found that the inclusion of multiwalled carbon nanotubes in the nanocomposite and hybrid composites improves storage modulus and loss factor (i.e., tan δ) compared to the conventional CFRP-based composite materials under hygrothermal conditions.


2011 ◽  
Vol 22 (17) ◽  
pp. 1941-1948 ◽  
Author(s):  
Junghyun Ryu ◽  
Beom-Seok Jung ◽  
Min-Saeng Kim ◽  
JungPyo Kong ◽  
MaengHyo Cho ◽  
...  

The large recovery force and non-linear deformation behaviour resulting from a change in the temperature in shape-memory alloys (SMAs) make them attractive materials for applications in smart materials and structures, as well as actuators. However, SMAs are limited in their application because they cannot support general loads such as bending or compression. SMA wire-embedded composite materials, where materials such as glass fibre reinforced plastics (GFRPs) are combined with SMAs, are proposed to overcome these limitations. However, the increased stiffness of GFRPs limits the deformation that can be achieved. The inclusion of more compliant materials, such as silicon rubber, into the matrix can improve the achievable deformation, and the characteristics of the resulting hybrid composite can be controlled by varying the conformation of the material. In this study, a numerical simulation method was developed to predict the deformation behaviour of SMA wire-embedded hybrid composites. To verify the simulation procedure, several conformations of SMA wire-embedded hybrid composites were fabricated, and their deformation behaviours were compared with the simulation results. The simulation was then used to achieve a favourable trade-off between the stiffness and the achievable deformation of the structure.


Sign in / Sign up

Export Citation Format

Share Document