scholarly journals The Pósa method with ATD lenses: Praxeological analysis on math problems in Hungarian talent care education with ‘recursion’ in their logos blocksLa méthode Pósa avec des lentilles TAD: analyse praxéologique des problèmes mathématiques dans l’enseignement hongrois de soins aux talents avec «récursion» dans leurs blocs de logos

Author(s):  
Dániel Katona

Abstract.The praxeological analysis of selected questions used in the Hungarian Pósa method is presented, focusing on a common element in their logos blocks, called recursive thinking. As part of a broader research with reverse didactic engineering methodology, aiming at theorizing the ‘intuitively’ developed Pósa method, the present findings are also compared to previous results and re-interpret the concepts of kernel and web of problem thread. Based on these results gained by using tools of the Anthropological Theory of the Didactic, the paper offers a partial description of the didactic strategy of the Pósa method for inquiry-based learning mathematics and raises questions for further research.RésuméNous présentons l'analyse praxéologique de certaines questions utilisées dans la méthode hongroise Pósa, en nous concentrant sur un élément commun à leurs logos blocs, appelé pensée récursive. Dans le cadre d’une recherche plus large qui met en place une méthodologie d’ingénierie didactique inverse visant à théoriser la méthode de Pósa développée "intuitivement", les résultats actuels réinterprètent les concepts de noyau et de réseau de fils de problèmes. Sur la base des résultats obtenus en utilisant les outils de la théorie anthropologique du didactique, l'article offre une description partielle de la stratégie didactique de la méthode Pósa pour l'apprentissage des mathématiques basé sur l'enquête, et soulève des questions pour des recherches ultérieures. 

2021 ◽  
Author(s):  
Dragana Glogovac ◽  
◽  
Marina Milošević ◽  
Bojan Lazić ◽  

Modern primary education, especially mathematics, requires constant innovation of teaching practice in order to modernize, rationalize, and efficiently the teaching process. Teaching mathematics should be experienced as a process that promotes learning with understanding, stimulates motivation, active learning, research, critical thinking, analysis, problem solving, drawing conclusions, exchange of experiences. The tendency to improve the quality of mathematics education has resulted in many studies pointing to the benefits of research-based mathematics (IN) teaching, known as inquiry-based learning (IBL), recognized as an essential way of organizing the teaching process to develop key competencies, abilities and skills in 21st century. Тhe aim of this paper is to see, based on a comprehensive theoretical analysis and the results of previous research. The created model of teaching mathematics based on research represents a useful framework for improving the quality of the process of teaching and learning mathematics, and empowers teachers in its application and affirmation, gaining insight into the way of organizing research learning.


2021 ◽  
Vol 1 (3) ◽  
pp. 338-347
Author(s):  
Dwiana Permatasari ◽  
Sri Subarinah ◽  
Muhammad Turmuzi ◽  
Sripatmi Sripatmi

The aim of this study is to describe the problem-solving ability of the ninth grade students with high, medium, and low interest in learning mathematics on math problems type Higher Order Thinking Skill (HOTS) in SMPN 2 MATARAM 2020/2021. This type of research is descriptive qualitative and the instruments used are mathematics questionnaire, the HOTS test, and an interview. The results of questionnaire via google form, there were 35 students of ninth grade has learning interest of high, medium, and low respectively 15, 16, and 4 students. Then, with stratified random sampling, 2 students were selected at each level to work on HOST test and interviews. The results of the data analysis from the ninth grade students of SMPN 2 Mataram 2020/2021 are the students with high interest in learning mathematics had very good at understanding problems, compiling plans, implementing plans, and reviewing. Students with moderate interest in learning mathematics are very good at understanding problems, good at planning, but quiet enough for implementing plans and reviewing. Meanwhile, students with low interest in learning mathematics are very good at understanding problems, good at planning, but lacking in implementing plans and very less in the reviewing them                                                                                                                   


2018 ◽  
Vol 3 (1) ◽  
pp. 1 ◽  
Author(s):  
Gangsar Ali Daroni ◽  
Gunarhadi Gunarhadi ◽  
Edy Legowo

Mathematics is an important subject to be learned by all children. Visually impaired children experience obstacles in following the process of mathematics learning caused by abnormalities. Visually impaired students experience obstacles in the process of thinking at the disequilibrium stage and low understanding of concepts when studying mathematics. It caused them to experience difficulties when doing math problems. Assistive technology is a technology created specifically to improve or maintain the functional ability of children with special needs in order to accomplish tasks that hard for them to do. Assistive technology for visually impaired children is made by maximizing the abilities that the children still possess and helping them to get a clearer mathematical concept. This article is a literary study which aims to provide information about the difficulty for the visually impaired students in mathematics learning and assistive technologies that have been developed to support the learning. This article can be used as the basis for developing new assistive technology in mathematics learning. Assistive technology is needed to help children with visual impairment in following the learning of mathematics and to optimize the ability of the children in learning mathematics.


Author(s):  
Edelweis Jose Tavares Barbosa ◽  
Anna Paula de Avelar Brito Lima

RésuméLe but de cet article est d'analyser, de manière comparative, les livres didactiques et les praxéologies mises en place par les enseignants dans leur pratique pédagogique, concernant l'enseignement des équations polynomiales du premier degré. Cette étude est faite dans le cadre de la théorie anthropologique du didactique (TAD) proposée par Yves Chevallard et ses collaborateurs (1999, 2002, 2009, 2010). La méthodologie est basée sur une approche ethnographique qualitative, dans laquelle les organisations mathématiques et didactiques de trois enseignants sont analysées en les comparant à celles des livres de référence. Les résultats indiquent qu'il existe une certaine conformité entre les praxéologies à enseigner, proposées par les auteurs des manuels scolaires et les praxéologies effectivement enseignées par les professeurs en classe. Les enseignants sont les organisateurs des tâches, des techniques et de la technologie de complexité croissante (FONSECA, 2004) qui sont rendus routinières ou problématiques en classe. La résolution d’une équation polynomiale du premier degré du type ax+b=c a été le point commun des trois professeurs, bien que deux des trois enseignants aient aussi travaillé des équations du type a1x+b1=a2x+b2.Mots-clés : Livres didactiques, Équations polynomiales du premier degré, Théorie Anthropologique du didactique.AbstractThe aim of this article was to analyze, comparatively, praxeologies in didactic books and praxeologies carried out by the teacher, concerning the teaching of polynomial equations of the first degree. This study is done within the framework of the Anthropological Theory of Didactics (ATD), proposed by Yves Chevallard and his collaborators (1999, 2002, 2009, 2010). The methodology consists of a qualitative ethnographic approach, in which the mathematical and didactic organizations of three teachers were compared with those of their reference books. The results indicate that there is some conformity between the praxeologies to be taught, proposed by the authors of the textbooks, and the praxeologies effectively taught by the teachers in the classroom. Teachers are the organizers of tasks, techniques, and technology of increasing complexity (FONSECA, 2004) that are made routine or problematic in the classroom. The resolution of a first-degree polynomial equation of the type ax+b=c was the common point among the three teachers, although two of the three teachers also worked on equations of the type a1x+b1=a2x+b2.Keywords: Didactic books, Polynomial equations of the first degree, Anthropological theory of didactics.


Author(s):  
Diana Patricia Salgado ◽  
María Rita Otero ◽  
Verónica Parra

AbstractThis work fits within a wider research whose general objective is teaching mathematics to non-mathematicians at the university, taking central assumptions of the Anthropological Theory of Didactics. This work proposes a praxeological model of reference related to a micro-entrepreneurship costs calculation. The generative question How to calculate micro-entrepreneurship costs? links mathematical and economic praxeologies. This model allows to go through a part of the study programme of a university calculus course.Keywords: Anthropological theory of the didactic; Course of study and research; Praxeological Reference Model.RésuméCe travail fait partie d’une recherche plus large dont l’objectif général est l’enseignement des mathématiques pour non-mathématiciens à l’université dans le cadre de la Théorie Anthropologique du Didactique. On propose un modèle praxéologique de référence sur le calcul de coûts d’une micro-entreprise. La question génératrice est Comment calculer les coûts dans une micro-entreprise? Elle associe plusieurs organisations mathématiques et économiques. Ce modèle permet de couvrir une partie du programme d’études d’un cours de Calcul du niveau universitaire. Mots-clés : Théorie anthropologique de la didactique, Parcours d'étude et de recherche, Modèle de référence praxéologique.


2021 ◽  
Vol 1 (3) ◽  
pp. 144-150
Author(s):  
Suwanto Suwanto ◽  
Ade Evi Fatimah

Less optimal musical intelligence in students and improper application in mathematics learning is the basis for the preparation of articles. The misunderstanding of applying musical intelligence is quite alarming, for example when students learn to listen to music, they actually don't use their musical intelligence to learn or change their behavior. In this condition, music has a role in arousing motivation, memory and reflexes to learn, not using musical intelligence to learn. The preparation of this article uses the literature review method with the keywords musical intelligence (musical intelligence), learning and learning mathematics in books and journals indexed by Googles choolar. The application of musical intelligence in mathematics learning requires careful consideration and expertise in designing learning to be carried out. Some examples of using musical intelligence in learning mathematics include converting notes into numbers, solving math problems related to scales, designing memorization of mathematical formulas in the form of chants that are fun for students.


Author(s):  
Sinar Depi Harahap

Learning mathematics should be able to improve the abilityand creativity in learning mathematics, especially in solving mathematical problems. To improve theability of anappropriate learning need sand learning mathematical problem submissionis in accordance with the needs of students in facilitating the completion of (solution) of the mathematical problem significantly. To obtain data submission capability math problem students, the research for mulated the problemas follows: (a) How does the ability filing math problems before and after the learning seen from the stage before and during problem solving?,(b) How is the level of complexity of the questions asked of students according to the structure of language and mathematical relationships?, (c) how associations filing capability math problems with the ability of the settlement (solving) the mathematical problem?.To answer this problem conducted experimental research on mathematics semester students majoringin STKIP "Tapanuli Selatan" Padangsidimpuan. Results showed that (a) the ability of the student submission mathematical problemsseen from the stage before and during the settlement of problems inproblem-based learningis quite good, as shown by the large percentage of math questions that can be solved either with new information and without any new information. (b) Differences filing capabilities grade math problems and problem-based learning class conventional learningis significant. (c) the ability filing math problems with the ability of the settlement (solving) the strong association of students of mathematics problems.


Author(s):  
Nathalie Anwandter Cuellar

Dans cet article, nous nous intéressons aux indices d’un problème de la profession inhérent aux mathématiques à enseigner et aux mathématiques pour l’enseignement relatives aux grandeurs et mesures au collège en France. Il s’agit de montrer comment l’incorporation de l’étude des grandeurs et mesures en tant que domaine dans le nouveau programme demande la construction de nouvelles organisations mathématiques permettant de la faire, ainsi que l’articulation entre les anciens et nouveaux savoirs, ce que nous présentons comme une difficulté révélatrice d’un problème de la profession.Mots-clés: Collège Français. Grandeurs et Mesures; théorie anthropologique du didactique; problème de la profession.AbstractIn this article, we discuss professional problems inherent to the mathematics to be taught and to the mathematics for teaching quantities and measures in junior high school in France. We show how incorporating the study of quantities and measures, as a new domain of the program, requires the construction of new mathematical framework as well as the coordination between the old and the new knowledge. This transformation denotes a noteworthy difficulty revealing a professional problem.Keywords: junior high school, quantities and measures, Anthropological Theory of Didactic, Problem of the profession.


Author(s):  
Anne-Marie Rinaldi

RésuméMon travail de thèse dans le cadre de la théorie anthropologique du didactique m’a permis de construire une organisation mathématique de référence autour du calcul soustractif et d’élaborer une ingénierie pour le CE2, en cherchant à rester assez proche des pratiques de l’enseignement ordinaire. L’évolution des productions des élèves et des discours des enseignants sur un ensemble de séquences permet de questionner l’usage d’ostensifs tels que les écritures arithmétiques et les schémas avec la droite numérique dans le but de décrire, valider et évaluer un ensemble de techniques de calcul mental.Mots clés : Ostensif, Techniques de calcul mental.AbstractMy thesis work within the framework of the Anthropological Theory of Didactics allowed me to build a mathematical organization of reference around the subtractive calculation and to elaborate an engineering for the CE2, trying to remain rather close to the practices of the teaching ordinary. The evolution of students 'productions and teachers' speeches on a set of sequences makes it possible to question the use of ostensives such as arithmetic writings and diagrams with the number line in order to describe, validate and evaluate a set of techniques of mental calculation.Keywords: Ostensive, Techniques of mental calculation.


Sign in / Sign up

Export Citation Format

Share Document