scholarly journals Aerodynamic Study of the Wind Flow in the Area of the R2 Expressway in Slovakia

2021 ◽  
Vol 29 (2) ◽  
pp. 55-61
Author(s):  
Olga Hubová ◽  
Marek Macák ◽  
Alžbeta Grmanová

Abstract Our calculation of wind effects was based on the specific wind situation of the planned R2 expressway. Given the topography and the prevailing wind directions, it was necessary to analyse the speeds for winds that could cause vehicles with trailers to be pushed off the roadway, as has been observed in recent years. Using a CFD simulation in the ANSYS FLUENT program, we analysed the entire section of the planned R2 expressway in order to evaluate the wind speeds at the level of the centre of gravity of truck trailers. Statistical turbulence models based on a time-averaging method, i.e., the RANS-Reynolds Averaged Navier-Stokes equations, of turbulent flow quantities and the time-averaging procedure of balance equations are suitable for solving the engineering tasks. In numerical simulations, the Realizable k - ε model was used in which the calculation of the turbulent dynamic viscosity in the equation for Boussinesque’s hypothesis was solved using two transport equations. Plotting and comparing the wind speeds for significant wind directions allowed us to design protection in the dangerous areas using protective walls.

Author(s):  
Eiman B Saheby ◽  
Xing Shen ◽  
Anthony P Hays ◽  
Zhang Jun

This study describes the aerodynamic efficiency of a forebody–inlet configuration and computational investigation of a drone system, capable of sustainable supersonic cruising at Mach 1.60. Because the whole drone configuration is formed around the induction system and the design is highly interrelated to the flow structure of forebody and inlet efficiency, analysis of this section and understanding its flow pattern is necessary before any progress in design phases. The compression surface is designed analytically using oblique shock patterns, which results in a low drag forebody. To study the concept, two inlet–forebody geometries are considered for Computational Fluid Dynamic simulation using ANSYS Fluent code. The supersonic and subsonic performance, effects of angle of attack, sideslip, and duct geometries on the propulsive efficiency of the concept are studied by solving the three-dimensional Navier–Stokes equations in structured cell domains. Comparing the results with the available data from other sources indicates that the aerodynamic efficiency of the concept is acceptable at supersonic and transonic regimes.


Author(s):  
Jacob C. Kaessinger ◽  
Kramer C. Kors ◽  
Jordan S. Lum ◽  
Heather E. Dillon ◽  
Shannon K. Mayer

Convective heat transfer beyond explicit solutions to the Navier Stokes equations is often an empirical science. Schlieren imaging is one of the only fluid imaging systems that can directly visualize the density gradients of a fluid using collimated light and refractive properties. The ability to visualize fluid densities is useful in both research and educational fields. A Schlieren imaging device has been constructed by undergraduate students at the University of Portland. The device is used for professorial heat transfer and fluid dynamics research and to help undergraduates visualize and understand natural convection. This paper documents the design decisions, design process, and the final specifications of the Schlieren system. A simple 2-D heated cylindrical model is considered and evaluated using Schlieren imaging, OpenFOAM C.F.D. simulation, and convection analysis using a Nusselt correlation. Results are presented for the three analysis techniques and show excellent verifications between the CFD simulation, Nusselt correlation, and Schlieren imaging system.


2020 ◽  
Vol 35 ◽  
pp. 46-54
Author(s):  
Daniele Twardowski ◽  
Diego Alves de Miranda

With each passing day companies are looking more and more in the initial phase of the project, to understand the phenomena arising, so that in the execution of the project there are no failures, much less when the project is in operation. For this, the numerical simulation has been shown an increasingly efficient tool to assist the engineers and designers of machines and equipment. The Kaplan turbine design requires a high level of engineering expertise combined with a high level of knowledge in fluid mechanics, as poor design of a diffuser fin can lead to disordered turbulent flow which, when mixed with a high pressure drop, can cavitate into turbine blades. The aim of this study is to evaluate different types of diffuser fin profiles in the inlet at Kaplan turbines. For this, numerical computer simulation was used with the aid of the Ansys Fluent software, in which simulations of water flow in a steady state occurred. The software works with the finite volume method for the discretization of the Navier-Stokes equations. The simulations have proved to be efficient in capturing current lines and pointing out the best flow profile in a project, avoiding more complex turbine blade problems.


Author(s):  
J. Steelant ◽  
E. Dick

Turbomachinery flows are characterized by a very high intensity turbulent mean part. As a consequence, laminar flow in boundary layer regions undergoes transition through direct excitation of turbulence. This is the so-called bypass transition. Regions form that are intermittently laminar and turbulent. In particular in accelerating flows, as on the suction side of a turbine blade, this intermittent flow can extend over a very large part of the boundary layer. Classical turbulence modelling based on global time averaging is not valid in intermittent flows. To take correctly account of the intermittency, conditioned averages are necessary. These are averages taken during the fraction of time the flow is turbulent or laminar respectively. Starting from the Navier-Stokes equations, conditioned continuity, momentum and energy equations are derived for the laminar and turbulent parts of an intermittent flow. The turbulence is described by the classical k-ε model. The supplementary parameter introduced by the conditioned averaging is the intermittency factor. In the calculations, this factor is prescribed in an algebraic way.


Author(s):  
Bogdan Iwanowski ◽  
Marc Lefranc ◽  
Rik Wemmenhove

Use of CFD tools for industrial offshore applications is a common practice nowadays. So is the need for validation of such tools against experimental results. This paper presents one of the CFD tools, ComFLOW, which solves Navier-Stokes equations and employs an improved Volume of Fluid (iVOF) method to find temporary location of fluid’s free surface. The code is used to simulate flow around a semi-submersible offshore platform due to an incoming regular wave. In particular, wave run-up on the semi’s columns and under-deck fluid impact phenomena are investigated on high-accuracy computational grids with number of cells being in range of 10 millions. Results of numerical simulations are compared with experimental data and focus is on local fluid flow details in immediate vicinity of the platform. Wave run-up on the platform’s columns and fluid pressures at various locations, including under-deck impact, are reported and verified against the experiment for a range of incoming wave heights.


2011 ◽  
Vol 1 (4) ◽  
Author(s):  
Wajdi Chtourou ◽  
Meriem Ammar ◽  
Zied Driss ◽  
Mohamed Abid

AbstractIn this paper, we performed a comparison of four turbulence models using for numerical simulation of the hydrodynamic structure generated by a Rushton turbine in a cylindrical tank. The finite volume method was employed to solve the Navier-Stokes equations governing the transport of momentum. In this study four closure models tested were: k-ɛ standard, k-ɛ RNG, k-ɛ Realizable and RSM (Reynolds Stress Model). MRF (Multi Reference Frame) technique was used with FLUENT software package. The present work aimed to provide improved predictions of turbulent flow in a stirred vessel and in particular to assess the ability to predict the dissipation rate of turbulent kinetic energy (e) that constitutes a most stringent test of prediction capability due to the small scales at which dissipation takes place. The amplitude of local and overall dissipation rate is shown to be strongly dependent on the choice of turbulence model. The numerical predictions were compared with literature results for comparable configurations and with experimental data obtained using Particle Image Velocimetry (PIV). A very good agreement was found with regards to turbulence.


1989 ◽  
Author(s):  
Francesco Martelli ◽  
Vittorio Michelassi

An implicit procedure based on the artificial compressibility formulation is presented for the numerical solution of the two-dimensional incompressible steady Navier-Stokes equations in the presence of large separated regions. Turbulence effects are accounted for by the Chien low Reynolds number form of the K-ε turbulence model and the Baldwin-Lomax algebraic expression for turbulent viscosity. The governing equations are written in conservative form and implicitly solved in fully coupled form using the approximate factorization technique. Preliminary tests were carried out in a laminar flow regime to check the accuracy and stability of the method in two-dimensional and cylindrical axisymmetric flow configurations. After testing in laminar and turbulent flow regimes and comparing the two turbulence models, the code was successfully applied to an actual gas turbine diffuser at low Mach numbers.


2009 ◽  
Vol 2009 ◽  
pp. 1-13
Author(s):  
Leo G. Rebholz

We present enhanced physics-based finite element schemes for two families of turbulence models, the models and the Stolz-Adams approximate deconvolution models. These schemes are delicate extensions of a method created for the Navier-Stokes equations in Rebholz (2007), that achieve high physical fidelity by admitting balances of both energy and helicity that match the true physics. The schemes' development requires carefully chosen discrete curl, discrete Laplacian, and discrete filtering operators, in order to permit the necessary differential operator commutations.


Author(s):  
J.-F. Simon ◽  
O. Le´onard

This paper presents a throughflow analysis tool developed in the context of the average-passage flow model elaborated by Adamczyk. The Adamczyk’s flow model describes the 3-D time-averaged flow field within a blade row passage. The set of equations that governs this flow field is obtained by performing a Reynolds averaging, a time averaging and a passage-to-passage averaging on the Navier-Stokes equations. The throughflow level of approximation is obtained by performing an additional circumferential averaging on the 3-D average-passage flow. The resulting set of equations is similar to the 2-D axisymmetric Navier-Stokes equations but additional terms resulting from the averages show up: blade forces, blade blockage factor, Reynolds stresses, deterministic stresses, passage-to-passage stresses and circumferential stresses. This set of equations represents the ultimate throughflow model provided that all stresses and blade forces can be modeled. The relative importance of these additional terms is studied in the present contribution. The stresses and the blade forces are determined from 3-D steady and unsteady databases (a low speed compressor stage and a transonic turbine stage) and incorporated in a throughflow model based on the axisymmetric Navier-Stokes equations. A good agreement between the throughflow solution and the averaged 3-D results is obtained. These results are also compared to those obtained with a more “classical” throughflow approach based on a Navier-Stokes formulation for the endwall losses, correlations for profile losses and a simple radial mixing model assuming turbulent diffusion.


1997 ◽  
Vol 119 (4) ◽  
pp. 900-905 ◽  
Author(s):  
X. Zheng ◽  
C. Liao ◽  
C. Liu ◽  
C. H. Sung ◽  
T. T. Huang

In this paper, computational results are presented for three-dimensional high-Reynolds number turbulent flows over a simplified submarine model. The simulation is based on the solution of Reynolds-Averaged Navier-Stokes equations and two-equation turbulence models by using a preconditioned time-stepping approach. A multiblock method, in which the block loop is placed in the inner cycle of a multi-grid algorithm, is used to obtain versatility and efficiency. It was found that the calculated body drag, lift, side force coefficients and moments at various angles of attack or angles of drift are in excellent agreement with experimental data. Fast convergence has been achieved for all the cases with large angles of attack and with modest drift angles.


Sign in / Sign up

Export Citation Format

Share Document