Basis of macro/micro-machining and polishing of semiconductor materials using high etch rate plasma assisted chemical etching

1996 ◽  
Author(s):  
C. Zarowin
2000 ◽  
Vol 622 ◽  
Author(s):  
Patrick W. Leech ◽  
Geoffrey K. Reeves ◽  
Anthony S. Holland

ABSTRACTThe reactive ion etching of diamond in O2, CF4/O2, CHF3/O2, O2/Ar) discharges has been examined as a function of bias voltage, flow rate and composition of the gas mixtures. Etching in O2 and O2/Ar plasmas (with flow ratio of O2/Ar >25% ) was characterised by a high etch rate (∼35 nm/min) and an increase in surface roughness with rising bias voltage. The CF4/O2 plasmas also produced a high etch rate (∼50 nm/min) but with only minor dependence of roughness on bias voltage. In comparison, the O2/Ar (with O2/Ar flow ratio <25%) and CHF3/O2 plasmas resulted in a low etch rate (7-10 nm/min). The high and low rate regimes were identified as ion- enhanced chemical etching and physical sputtering respectively. Etching in the O2/Ar plasmas has been attributed to a combination of the two processes dependent on the O2 content.


Author(s):  
Jianwei Zhou ◽  
Wei Zheng ◽  
Taekoo Lee

Abstract Multi-Chip Package (MCP) decapsulation is now becoming a rising problem. Because for traditional decapsulation method, acid can’t dissolve the top silicon die to expose the bottom die surface in MCP. It makes inspecting the bottom die in MCP is difficult. In this paper, a new MCP decapsulation technology combining mechanical polishing with chemical etching is introduced. This new technology can remove the top die quickly without damaging the bottom die using KOH and Tetra-Methyl Ammonium Hydroxide (TMAH). The technology process and relative application are presented. The factors that affect the KOH and TMAH etch rate are studied. The usage difference between the two etchant is discussed.


2009 ◽  
Vol 1201 ◽  
Author(s):  
Jae-Kwan Kim ◽  
Jun Young Kim ◽  
Seung-Cheol Han ◽  
Joon Seop Kwak ◽  
Ji-Myon Lee

AbstractThe etch rate and surface morphology of Zn-containing oxide and HfO2 films after wet chemical etching were investigated. ZnO could be easily etched using each acid tested in this study, specifically sulfuric, formic, oxalic, and HF acids. The etch rate of IGZO was strongly dependent on the etchant used, and the highest measured etch rate (500 nm/min) was achieved using buffered oxide etchant at room temperature. The etch rate of IGZO was drastically increased when sulfuric acid at concentration greater than 1.5 molar was used. Furthermore, etching of HfO2 films by BF acid proceeded through lateral widening and merging of the initial irregular pits.


2013 ◽  
Vol 740-742 ◽  
pp. 825-828 ◽  
Author(s):  
Jerome Biscarrat ◽  
Jean François Michaud ◽  
Emmanuel Collard ◽  
Daniel Alquier

Due to its inert chemical nature, plasma etching is the most effective technique to pattern SiC. In this paper, dry etching of 4H-SiC substrate in Inductively Coupled Plasma (ICP) has been studied in order to evaluate the impact of process parameters on the characteristics of etching such as etch rate and trenching effect. Key process parameters such as platen power and ICP coil power prove to be essential to control the SiC etch rate. On the other hand, the ICP coil power and the working pressure mainly master the trenching effect. Our results enlighten that high etch rate with minimal trenching effect can be obtained using high ICP coil power and low working pressure.


2008 ◽  
Vol 1108 ◽  
Author(s):  
Xiaoyan Xu ◽  
Vladimir Kuryatkov ◽  
Boris Borisov ◽  
Mahesh Pandikunta ◽  
Sergey A Nikishin ◽  
...  

AbstractThe effect of BCl3 and BCl3/Ar pretreatment on Cl2/Ar and Cl2/Ar/BCl3 dry etching of AlN is investigated using inductively coupled plasma reactive ion etching. The native AlN oxide can be effectively removed by a short exposure to BCl3 or BCl3/Ar plasma. Compared to the chlorine based plasma etching, BCl3/Ar is found to have the highest etch rate for both AlN and its native oxide. Following removal of the native oxide, Cl2/Ar/BCl3 plasma etching with 15% BCl3 fraction results in a high etch rate ˜ 87 nm/min and modest increases in the surface roughness.


1998 ◽  
Vol 546 ◽  
Author(s):  
J. Hopkins ◽  
H. Ashraf ◽  
J. K. Bhardwaj ◽  
A. M. Hynes ◽  
I. Johnston ◽  
...  

AbstractIn the ongoing enhancement of MEMS applications, the STS Advanced Silicon Etch, (ASETM). process satisfies the demanding requirements of the industry. Typically, highly anisotropic. high aspect ratios profiles with fine CD (critical dimension) control are required. Selectivities to photoresist of 150:1 with Si etch rates of up to 10μm/min are demonstrated. Applications range from shallow etched optical devices to through wafer membrane etches. This paper details some of the fundamental trends of the ASETM process and goes on to discuss how the process has been enhanced to meet product specifications. Parameter ramping is a powerful technique used to achieve the often-conflicting requirements of high etch rate with good profile/CD control. The results are presented in this paper.


2010 ◽  
Vol 65 ◽  
pp. 251-256
Author(s):  
Huey Tze Ting ◽  
Khaled A. Abou-El-Hossein ◽  
Han Bing Chua

Machinable glass ceramic (MGC) is well known in the micro-electromechanical system and semiconductor industry. Chemical etching is used in this experiment to study the performance of MGC. The etching rate of MGC and its accuracy by indentation method is studied. The categoric parameter applied here is the type of chemical etchant used: hydrochloric (HCl), hydrophosphoric (H3PO4) and hydrobromic (HBr) acids; and, numerical parameters are etching temperature and etching solution. The experimental investigation that was carried out is governed by design of experiment (DoE).


Sign in / Sign up

Export Citation Format

Share Document