scholarly journals Logarithmic derivative estimates of meromorphic functions of finite order in the half-plane

2020 ◽  
Vol 54 (2) ◽  
pp. 172-187
Author(s):  
I.E. Chyzhykov ◽  
A.Z. Mokhon'ko

We established new sharp estimates outside exceptional sets for of the logarithmic derivatives $\frac{d^ {k} \log f(z)}{dz^k}$ and its generalization $\frac{f^{(k)}(z)}{f^{(j)}(z)}$, where $f$ is a meromorphic function $f$ in the upper half-plane, $k>j\ge0$ are integers. These estimates improve known estimates due to the second author in the class of meromorphic functions of finite order.Examples show that size of exceptional sets are best possible in some sense.

1970 ◽  
Vol 40 ◽  
pp. 133-137 ◽  
Author(s):  
Theodore A. Vessey

Let w = f(z) be a normal meromorphic function defined in the upper half plane U = {Im(z) >0}. We recall that a meromorphic function f(z) is normal in U if the family {f(S(z))}, where z′ = S(z) is an arbitrary one-one conformal mapping of U onto U, is normal in the sense of Montel. It is the purpose of this paper to state some results on the behavior of f(z) on curves which approach a point x0 on the real axis R with a fixed (finite) order of contact q at x0.


2020 ◽  
Vol 54 (2) ◽  
pp. 154-161
Author(s):  
K.G. Malyutin ◽  
A.A. Revenko

The extremal problems in the space of meromorphic functions of order $\rho>0$ in upper half-plane are studed.The method for studying is based on the theory of Fourier coefficients of meromorphic functions. The concept of just meromorphic function of order $\rho>0$ in upper half-plane is introduced. Using Lemma on the P\'olya peaks and the Parseval equality, sharp estimate from below of the upper limits of relations Nevanlinna characteristics of meromorphic functions in the upper half plane are obtained.


Author(s):  
K.G. Malyutin ◽  
M.V. Kabanko

A strictly positive continuous unbounded increasing function $\gamma(r)$ on the half-axis $[0,+\infty)$ is called growth function. Let the growth function $\gamma(r)$ satisfies the condition $\gamma(2r)\leq M\gamma(r)$ for some $M>0$ and for all $r>0$. In the paper, the class $JM(\gamma(r))^o$ of meromorphic functions of completely regular growth on the upper half-plane with respect to the growth function $\gamma$ is considered. The criterion for the meromorphic function $f$ to belong to the space $JM(\gamma(r))^o$ is obtained. The definition of the indicator of function from the space $JM(\gamma(r))^o$ is introduced. It is proved that the indicator belongs to the space $\mathbf{L}^p[0,\pi]$ for all $p>1$.


2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Jianming Qi ◽  
Jie Ding ◽  
Wenjun Yuan

We study the value distribution of a special class difference polynomial about finite order meromorphic function. Our methods of the proof are also different from ones in the previous results by Chen (2011), Liu and Laine (2010), and Liu and Yang (2009).


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Mingliang Fang ◽  
Degui Yang ◽  
Dan Liu

AbstractLet c be a nonzero constant and n a positive integer, let f be a transcendental meromorphic function of finite order, and let R be a nonconstant rational function. Under some conditions, we study the relationships between the exponent of convergence of zero points of $f-R$ f − R , its shift $f(z+nc)$ f ( z + n c ) and the differences $\Delta _{c}^{n} f$ Δ c n f .


2014 ◽  
Vol 57 (2) ◽  
pp. 381-389
Author(s):  
Adrian Łydka

AbstractWe study analytic properties function m(z, E), which is defined on the upper half-plane as an integral from the shifted L-function of an elliptic curve. We show that m(z, E) analytically continues to a meromorphic function on the whole complex plane and satisfies certain functional equation. Moreover, we give explicit formula for m(z, E) in the strip |ℑz| < 2π.


Author(s):  
Bao Qin Li

Abstract We give a characterization of the ratio of two Dirichelt series convergent in a right half-plane under an analytic condition, which is applicable to a uniqueness problem for Dirichlet series admitting analytic continuation in the complex plane as meromorphic functions of finite order; uniqueness theorems are given in terms of a-points of the functions.


1983 ◽  
Vol 6 (4) ◽  
pp. 617-669 ◽  
Author(s):  
Wilhelm Stoll

Value distribution is developed on polydiscs with the special emphasis that the value distribution function depend on a vector variable. A Lemma of the logarithmic derivative for meromorphic functions on polydiscs is derived. Here the Bergman boundary of the polydiscs is approached along cones of any dimension and exceptional sets for such an approach are defined.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Nan Wu ◽  
Zuxing Xuan

We obtain the existence of the filling disks with respect to Hayman directions. We prove that, under the conditionlimsupr→∞⁡(Tr,f/log⁡r3)=∞, there exists a sequence of filling disks of Hayman type, and these filling disks can determine a Hayman direction. Every meromorphic function of positive and finite orderρhas a sequence of filling disks of Hayman type, which can also determine a Hayman direction of orderρ.


1997 ◽  
Vol 55 (3) ◽  
pp. 395-403 ◽  
Author(s):  
Tuen-Wai Ng ◽  
Chung-Chun Yang

In this paper, common right factors (in the sense of composition) of p1 + p2F and p3 + p4F are investigated. Here, F is a transcendental meromorphic function and pi's are non-zero polynomials. Moreover, we also prove that the quotient (p1 + p2F)/(p3 + p4F) is pseudo-prime under some restrictions on F and the pi's. As an application of our results, we have proved that R (z) H (z)is pseudo-prime for any nonconstant rational function R (z) and finite order periodic entire function H (z).


Sign in / Sign up

Export Citation Format

Share Document