scholarly journals On a nonlocal boundary value problem for the three-dimensional Chaplygin equation in a prismatic unbounded domain

Author(s):  
Сирожиддин Джамалов ◽  
Хамидулло Туракулов
Author(s):  
С.З. Джамалов ◽  
Р.Р. Ашуров ◽  
Х.Ш. Туракулов

В данной статье изучаются методами «ε-регуляризации» и априорных оценок с применением преобразования Фурье однозначная разрешимость и гладкость обобщенного решения одной полунелокальной краевой задачи для трехмерного уравнения Трикоми в неограниченной призматической области. In this article, the methods of «ε-regularization» and a priori estimates using the Fourier transform are studied the unique solvability and smoothness of the generalized solution of one semi-nonlocal boundary value problem for the three-dimensional Tricomi equation in an unbounded prismatic domain.


2016 ◽  
Vol 56 (1) ◽  
pp. 143-153 ◽  
Author(s):  
Katarzyna Szymańska-Dębowska

Abstract This work is devoted to the existence of solutions for a system of nonlocal resonant boundary value problem $$\matrix{{x'' = f(t,x),} \hfill & {x'(0) = 0,} \hfill & {x'(1) = {\int_0^1 {x(s)dg(s)},} }} $$ where f : [0, 1] × ℝk → ℝk is continuous and g : [0, 1] → ℝk is a function of bounded variation.


Filomat ◽  
2018 ◽  
Vol 32 (3) ◽  
pp. 801-808 ◽  
Author(s):  
Kh. Belakroum ◽  
A. Ashyralyev ◽  
A. Guezane-Lakoud

The nonlocal boundary-value problem for a third order partial differential equation in a Hilbert space with a self-adjoint positive definite operator is considered. Applying operator approach, the theorem on stability for solution of this nonlocal boundary value problem is established. In applications, the stability estimates for the solution of three nonlocal boundary value problems for third order partial differential equations are obtained.


Sign in / Sign up

Export Citation Format

Share Document