scholarly journals A Brief Journey into the History of and Future Sources and Uses of Fatty Acids

2021 ◽  
Vol 8 ◽  
Author(s):  
Michela Cerone ◽  
Terry K. Smith

Fats and lipids have always had a primary role in the history of humankind, from ancient civilisations to the modern and contemporary time, going from domestic and cosmetic uses, to the first medical applications and later to the large-scale industrial uses for food, pharmaceutical, cosmetics, and biofuel production. Sources and uses of those have changed during time following the development of chemical sciences and industrial technological advances. Plants, fish, and animal fats have represented the primary source of lipids and fats for century. Nowadays, the use of fatty acid sources has taken a turn: industries are mainly interested in polyunsaturated fatty acids (PUFAs), which have beneficial properties in human health; and also, for high-value fatty acids product for innovative and green production of biofuel and feedstocks. Thus, the constant increase in demand of fatty acids, the fact that marine and vegetable sources are not adequate to meet the high level of fatty acids required worldwide and climate change, have determined the necessity of the search for renewable and sustainable sources for fatty acids. Biotechnological advances and bioengineering have started looking at the genetic modification of algae, bacteria, yeasts, seeds, and plants to develop cell factory able to produce high value fatty acid products in a renewable and sustainable manner. This innovative approach applied to FA industry is a peculiar example of how biotechnology can serve as a powerful mean to drive the production of high value fatty acid derivatives on the concept of circular bioeconomy, based on the reutilisation of organic resources for alternative and sustainable productive patterns that are environmentally friendly.

2006 ◽  
Vol 131 (2) ◽  
pp. 284-289 ◽  
Author(s):  
Mauricio A. Cañoles ◽  
Randolph M. Beaudry ◽  
Chuanyou Li ◽  
Gregg Howe

Six-carbon aldehydes and alcohols formed by tomato (Lycopersicon esculentum Mill.) leaf and fruit tissue following disruption are believed to be derived from the degradation of lipids and free fatty acids. Collectively, these C-6 volatiles comprise some of the most important aroma impact compounds. If fatty acids are the primary source of tomato volatiles, then an alteration in the fatty acid composition such as that caused by a mutation in the chloroplastic omega-3-fatty acid desaturase (ω-3 FAD), referred to as LeFAD7, found in the mutant line of `Castlemart' termed Lefad7, would be reflected in the volatile profile of disrupted leaf and fruit tissue. Leaves and fruit of the Lefad7 mutant had ≈10% to 15% of the linolenic acid (18:3) levels and about 1.5- to 3-fold higher linoleic acid (18:2) levels found in the parent line. Production of unsaturated C-6 aldehydes Z-3-hexenal, Z-3-hexenol, and E-2-hexenal and the alcohol Z-3-hexenol derived from 18:3 was markedly reduced in disrupted leaf and fruit tissue of the Lefad7 mutant line. Conversely, the production of the saturated C-6 aldehyde hexanal and its alcohol, hexanol, were markedly higher in the mutant line. The shift in the volatile profile brought about by the loss of chloroplastic FAD activity in the Lefad7 line was detected by sensory panels at high significance levels (P < 0.0005) and detrimentally affected fruit sensory quality. The ratios and amounts of C-6 saturated and unsaturated aldehydes and alcohols produced by tomato were dependent on substrate levels, suggesting that practices that alter the content of linoleic and linolenic acids or change their ratios can influence tomato flavor.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 111-112
Author(s):  
Thu Dinh

Abstract Fatty acids determine the physical and chemical properties of fats. Animal fats, regardless of species, have more saturated and monounsaturated than polyunsaturated fatty acids. The major fatty acids in meat are palmitic (16:0), stearic (18:0), palmitoleic (16:1), oleic (18:1), linoleic (18:2), and linolenic (18:3) acids, among which oleic acid is the most predominant. Arachidonic acid (20:4 cis 5,8,11,14) is an essential fatty acid only found in animal fats and can be used as a quality control indicator in the fatty acid analysis. Fatty acid analysis has been traditionally performed by gas chromatography (GC) of volatile fatty acid derivatives, prominently the methyl esters, and flame ionization detection (FID), in which the carbon chain of fatty acids is degraded to the formylium ion CHO+. The FID is very sensitive and is the most widely used detection method for GC, providing a linear response, i.e., peak area, over a wide range of concentrations. Researchers have been used the FID peak area to calculate the percentages of fatty acids. However, the FID is a “carbon counter” and relies on the “equal per carbon” rule; therefore, at the same molar concentration, fatty acids with a different number of carbons produce different peak areas. The recent development of mass spectrometry technology has improved the specificity of fatty acid detection. Specific target and qualifier ions provide better identification and more accurate quantification of fatty acid concentrations. Although fatty acids can be identified through comparing ion fragmentation with various databases, authentic standards are needed for quantification purposes. Using mass spectrometry, more than 50 fatty acids have been identified in meat samples. Some branched-chain fatty acids may have flavor, safety, and shelf life implications in meat products.


Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1179
Author(s):  
Aleksandra Stamenkovic ◽  
Riya Ganguly ◽  
Michel Aliani ◽  
Amir Ravandi ◽  
Grant N. Pierce

Fatty acids come in a variety of structures and, because of this, create a variety of functions for these lipids. Some fatty acids have a role to play in energy metabolism, some help in lipid storage, cell structure, the physical state of the lipid, and even in food stability. Fatty acid metabolism plays a particularly important role in meeting the energy demands of the heart. It is the primary source of myocardial energy in control conditions. Its role changes dramatically in disease states in the heart, but the pathologic role these fatty acids play depends upon the type of cardiovascular disease and the type of fatty acid. However, no matter how good a food is for one’s health, its taste will ultimately become a deciding factor in its influence on human health. No food will provide health benefits if it is not ingested. This review discusses the taste characteristics of culinary oils that contain fatty acids and how these fatty acids affect the performance of the heart during healthy and diseased conditions. The contrasting contributions that different fatty acid molecules have in either promoting cardiac pathologies or protecting the heart from cardiovascular disease is also highlighted in this article.


Open Biology ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 190049 ◽  
Author(s):  
Yating Hu ◽  
Zhiwei Zhu ◽  
Jens Nielsen ◽  
Verena Siewers

The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels and chemicals, in particular ethanol, a biofuel produced in large quantities. With a need for high-energy-density fuels for jets and heavy trucks, there is, however, much interest in the biobased production of hydrocarbons that can be derived from fatty acids. Fatty acids also serve as precursors to a number of oleochemicals and hence provide interesting platform chemicals. Here, we review the recent strategies applied to metabolic engineering of S. cerevisiae for the production of fatty acid-derived biofuels and for improvement of the titre, rate and yield (TRY). This includes, for instance, redirection of the flux towards fatty acids through engineering of the central carbon metabolism, balancing the redox power and varying the chain length of fatty acids by enzyme engineering. We also discuss the challenges that currently hinder further TRY improvements and the potential solutions in order to meet the requirements for commercial application.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Yiming Zhang ◽  
Mo Su ◽  
Ning Qin ◽  
Jens Nielsen ◽  
Zihe Liu

Abstract Background Saccharomyces cerevisiae is being exploited as a cell factory to produce fatty acids and their derivatives as biofuels. Previous studies found that both precursor supply and fatty acid metabolism deregulation are essential for enhanced fatty acid synthesis. A bacterial pyruvate dehydrogenase (PDH) complex expressed in the yeast cytosol was reported to enable production of cytosolic acetyl-CoA with lower energy cost and no toxic intermediate. Results Overexpression of the PDH complex significantly increased cell growth, ethanol consumption and reduced glycerol accumulation. Furthermore, to optimize the redox imbalance in production of fatty acids from glucose, two endogenous NAD+-dependent glycerol-3-phosphate dehydrogenases were deleted, and a heterologous NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase was introduced. The best fatty acid producing strain PDH7 with engineering of precursor and co-factor metabolism could produce 840.5 mg/L free fatty acids (FFAs) in shake flask, which was 83.2% higher than the control strain YJZ08. Profile analysis of free fatty acid suggested the cytosolic PDH complex mainly resulted in the increases of unsaturated fatty acids (C16:1 and C18:1). Conclusions We demonstrated that cytosolic PDH pathway enabled more efficient acetyl-CoA provision with the lower ATP cost, and improved FFA production. Together with engineering of the redox factor rebalance, the cytosolic PDH pathway could achieve high level of FFA production at similar levels of other best acetyl-CoA producing pathways.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Karen Hudson

To identify genetic variation for fatty acid composition in mature soybean seeds, 4566 M3generation seed samples from a chemically mutagenized population were subjected to fatty acid profiling by gas chromatography. In the population, a wide range of variation in the content for each of the five major fatty acids was observed. Seventy-nine lines were identified which contained significantly high or low levels of one of the five major soybean fatty acids. These lines were advanced to the subsequent generation. Of the 79 lines showing a variant fatty acid profile in the M3, 52 showed clear heritability for the oil composition in the seeds of the subsequent generation. These lines are likely to represent 52 distinct genetic mutations. These mutants may represent new loci involved in the determination of soybean seed oil content or could be new isolates or alleles of previously identified genetic variants for soybean oil composition.


2020 ◽  
Author(s):  
Rita C. Kuo ◽  
Huan Zhang ◽  
James D. Stuart ◽  
Anthony A. Provatas ◽  
Linda Hannick ◽  
...  

AbstractAlgal lipids are important fuel storage molecules in algae and a currency for energy transfer in the marine food chain as well as materials for biofuel production, but their production and regulation are not well understood in many species including the common coastal phytoplankton Eutreptiella spp. Here, using gas chromatography-tandem mass spectrometry (GC/MS/MS), we discovered 24 types of fatty acids (FAs) in Eutreptiella sp. with a relatively high proportion of long chain unsaturated FAs. The abundances of C16, C18 and saturated FAs decreased when phosphate in the culture medium was depleted. Among the 24 FAs, docosahexaenoic acid (22:6) and eicosapentaenoic acid (20:5) were the most abundant, suggesting that Eutreptiella sp. preferentially invests in the synthesis of very long chain polyunsaturated fatty acids (VLCPFA). Further transcriptomic analysis revealed that Eutreptiella sp. likely synthesizes VLCPFA via Δ8 pathway and uses type I and II fatty acid synthases. Using RT-qPCR, we found that some of the lipid production genes, such as β-ketoacyl-ACP reductase, fatty acid desaturase, acetyl-CoA carboxylase, acyl carrier protein, Δ8 desaturase, and Acyl-ACP thioesterase, were more actively expressed during light period. Besides, two carbon-fixation genes were more highly expressed in the high lipid illuminated cultures, suggesting a linkage between photosynthesis and lipid production.


2020 ◽  
Vol 11 ◽  
pp. e3247
Author(s):  
Mounsif Charaf-eddine BENDI DJELLOUL ◽  
Sidi Mohamed Amrani ◽  
Pierangela Rovellini ◽  
Roza Chenoune

Olive represents the most widespread fruit cultivated in Algeria. Olive oil is the primary source of added fat in the Mediterranean diet with health benefits of which have been verified for millennia. Interest in phenolic compounds in olive oil has increased due to its antioxidant activity, which plays a very important role in human health. The present study is carried out to study the phenolic compounds and fatty acids profile of some olive oils from western Algeria. The quality parameters (acidity, peroxide value, K232, K270), tocopherol analysis, fatty acid composition and phenolic profile were determined by High performance chromatography (HPLC). The results showed that chemlal oil (SBA) recorded the highest level of tocopherol-α with 228.12 mg/Kg. Regarding the fatty acid composition, oleic acid was the most dominant, oil Oleaster (Bensekrane) records the highest percentage (72.80%) of oleic acid. The quantitative data on the phenolic content of the seven samples revealed that chemlal oil (SBA) had the highest level of polyphenols (328.99 mg/Kg). However, Sigoise oil (Sebra1) was characterized by the highest levels of tyrosol and hydroxytyrosol (15.89 mg/kg and 22.42 mg/kg, respectively). The highest concentrations of oleuropein derivatives and ligstroside derivatives were observed in chemlal oil (SBA) and the recoreded values were 105.97 mg/Kg and 83.49 mg/Kg, respectively. Chemlal oil (SBA) was characterized by the highest amount of lignans (35.93 mg/Kg), luteolin (10.16 mg/Kg) and apigenin (5.44 mg/Kg). Oleocanthal was found in all the tested samples and it was higher in Chemlal oil (102.43 mg/kg).


2016 ◽  
Vol 14 (2) ◽  
pp. 385-392
Author(s):  
Phạm Thị Bích Đào ◽  
Nguyễn Đình Tuấn ◽  
Trần Đăng Khoa ◽  
Chử Thị Huyên ◽  
Đỗ Hoàng Thành ◽  
...  

The features of polyunsaturated fatty acid-PUFA structures were corresponded to each separate functions  as adjusting the cellular physiology and gene expression. Therefore, lack of PUFA could lead to abnormalities in skin, kidney, neural networks, immune responses and inflammation; cardiovascular, endocrine, respiratory and reproductive systems. In fish oil, PUFA content were low, thus it was difficult to produce on a large scale. Therefore, the exploration of PUFA sources particularly as arachidonic acid-AA, eicosapentaenoic acid EPA, docosapentaenoic acid-DPA/DHA attracted many researches. Heterotrophic microalgae Thraustochytrids were capable of producing high amounts of DHA and PUFA composition varied. DHA can be synthesized by the metabolism of AA, EPA and DPA. The different types of PUFA reflected relationships in classification. Ten heterotrophic microalgae thraustochytrids isolated from mangrove Xuan Thuy, Nam Dinh contain fatty acid composition varied from C12 to C28. Especially, they had two important fatty acids of PUFA as EPA and DPA. Polyunsaturated fatty acids - PUFA content of ten thraustochytrid strains were from 28.95 to 49.62% total lipid. DPA compared to other PUFA were high for all thraustochytrid strains studied, accounting 20.22 to 39.35% TFA. Ten thraustochytrid strains had the highest growth with carbon source as glucose, total lipid reached 7 to 12.35 % dry weight biomass after 72 hours. Growth rate and lipid biosynthesis in organic nitrogen source were higher than in inorganic nitrogen sources. The best source of nitrogen for growth and lipid biosynthesis of ten thraustochytrid strains is yeast extract, total lipid were 8.57 to 18.87% dry weight biomass after 72 hours.


Author(s):  
Virginia C Gordon I ◽  
Christopher C Rainey ◽  
Willainia C Studmire

Abstract Background The Official American Oil Chemists’ Society (AOCS) Ca 5a-40 method for the determination of free fatty acids is based on titration of an ethanolic solution and requires a large volume of organic solvents, large sample aliquots, and up to 18 hours extraction time for some samples. The SafTest Free Fatty Acid Test Kit is a rapid method designed to measure the free fatty acid content of vegetable oils; fish oil; animal fats (tallows); meat meal and fish meal products; and crackers, chips, and other processed grain-based snack products using micro-analytical and membrane separation principles. Objective The study objective was to validate the SafTest Free Fatty Acid Test in one internal study, two contracted studies, and an independent laboratory study studies. Method Recovery, limit of quantitation, selectivity, robustness, stability, and consistency of the SafTest Free Fatty Acid Test were evaluated. Results Recoveries from control solutions ranged from 97 to 106%. Repeatability (RSDr) from method developer matrix studies ranged from 1.1 to 8.1%. Biases, expressed as a percentage recovery from AOCS Ca 5a-40, averaged 96.5% for olive oils, 94.0% for animal fats, and 103.9% for meat meals. Results observed in the independent laboratory study were similar. Conclusions The SafTest Free Fatty Acid Test can measure free fatty acid levels in oils, fats, meal, and snack matrices with accuracy and precision comparable to AOCS Ca 5a-40. Highlights The SafTest Free Fatty Acid Test Kit has the advantage of using reagent volumes, instrumental analysis, and easy-to-use, standardized procedures with rapid detection times for the determination of free fatty acids.


Sign in / Sign up

Export Citation Format

Share Document