scholarly journals The Importance of Optical Fibres for Internal Temperature Sensing in Lithium-ion Batteries during Operation

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3617
Author(s):  
Markus S. Wahl ◽  
Lena Spitthoff ◽  
Harald I. Muri ◽  
Asanthi Jinasena ◽  
Odne S. Burheim ◽  
...  

Lithium-ion batteries (LiBs) are widely used as energy storage systems (ESSs). The biggest challenge they face is retaining intrinsic health under all conditions, and understanding internal thermal behaviour is crucial to this. The key concern is the potentially large temperature differences at high charge/discharge rates. Excess heat created during charge/discharge will accelerate irreversible aging, eventually leading to failure. As a consequence, it is important to keep battery states within their safe operating range, which is determined by voltage, temperature, and current windows. Due to the chemically aggressive and electrically noisy environment, internal temperature measurement is difficult. As a result, non-invasive sensors must be physically stable, electromagnetic interference-resistant, and chemically inert. These characteristics are provided by fibre Bragg grating (FBG) sensors, which are also multiplexable. This review article discusses the thermal problems that arise during LiB use, as well as their significance in terms of LiB durability and protection. FBG-based sensors are described as a technology, with emphasis on their importance for direct temperature measurement within the LiB cell.

2015 ◽  
Vol 3 (40) ◽  
pp. 20267-20276 ◽  
Author(s):  
Rupesh Rohan ◽  
Kapil Pareek ◽  
Zhongxin Chen ◽  
Weiwei Cai ◽  
Yunfeng Zhang ◽  
...  

A polysiloxane based SIPE with grafted bis(sulfonyl)imide groups performs successfully in a temperature range of 25–80 °C with high charge–discharge rates.


2010 ◽  
Vol 25 (8) ◽  
pp. 1588-1594 ◽  
Author(s):  
Bin Liu ◽  
Da Deng ◽  
Jim Yang Lee ◽  
Eray S. Aydil

A simple and environmentally benign three-step hydrothermal method was developed for growing oriented single-crystalline TiO2-B and/or anatase TiO2 nanowire arrays on titanium foil over large areas. These nanowire arrays are suitable for use as the anode in lithium ion batteries; they exhibit specific capacities ranging from 200–250 mAh/g at charge-discharge rates of 0.3 C where 1 C is based on the theoretical capacity of 168 mAh/g. Batteries retain this capacity over as many as 200 charge-discharge cycles. Even at high charge-discharge rates of 0.9 C and 1.8 C, the specific capacities were 150 mAh/g and 120 mAh/g, respectively. These promising properties are attributed to both the nanometer size of the nanowires and their oriented alignment. The comparable electrochemical performance to existing technology, improved safety, and the ability to roll titanium foils into compact three-dimensional structures without additional substrates, binders, or additives suggest that these TiO2 nanowires on titanium foil are promising anode materials for large-scale energy storage.


2016 ◽  
Vol 18 (6) ◽  
pp. 4721-4727 ◽  
Author(s):  
Bo Lu ◽  
Yicheng Song ◽  
Qinglin Zhang ◽  
Jie Pan ◽  
Yang-Tse Cheng ◽  
...  

The crucial role of mechanical stress in voltage hysteresis of lithium ion batteries in charge–discharge cycles is investigated theoretically and experimentally.


2007 ◽  
Vol 336-338 ◽  
pp. 455-458
Author(s):  
Xiu Juan Shi ◽  
Yong Ping Zheng ◽  
Fei Yu Kang ◽  
Xin Lu Li ◽  
Wan Ci Shen

Cathode material Li[Ni1/3Co1/3Mn1/3]O2 for lithium-ion batteries with layered hexagonal structure was successfully synthesized in sol-gel way. The influences of calcination temperature (from 700° to 1000°C) on the structure and electrochemical behaviors of Li[Ni1/3Co1/3Mn1/3]O2 were extensively investigated. The results of XRD show that all samples are isostructural with α-NaFeO2 with a space group R-3m. XPS analysis shows that the oxidation states of Co and Mn were Co3+ and Mn4+ respectively, while Ni exists as Ni2+ and Ni3+. The charge-discharge experiments show that the sample calcined at 850°C delivers 194.8mAh/g in the first cycle at C/5 rate in 2.5-4.3V potential range.


2020 ◽  
Vol 5 (5(74)) ◽  
pp. 67-71
Author(s):  
N.V. Suharev

Problem statement: Currently, there is a need in the space industry to actively improve the characteristics of battery batteries, the use of new types of batteries for power supply systems of spacecraft leads to a constant demand to improve the control and verification equipment (CPA). Depending on the improvement of storage batteries (AB) for spacecraft, the requirements for electrical inspections and control and verificationequipment were gradually changed. With the advent of lithium-ion batteries for spacecraft, there was a need to develop and manufacture a charge-discharge hardware and software complex (ZRPAK). The charge-discharge hardware-software complex designed to work as a charger-bit complex to work with AB spacecraft for all ground operation phases, to verify compliance of the electrical characteristics of the AB to the specified requirements, conduct incoming inspection and Autonomous tests of AB on the manufacturer of the spacecraft. The advantages and disadvantages of the previously developed and currently used control and verification equipment are analyzed. The electrical characteristics of the KPA of all generations of development are summarized in the table. Based on the analysis of the development of batteries, trends in the development of control and verification equipment and the fact that all spacecraft of new developments will use only lithium-ion batteries, the requirements for a promising fifth-generation ZRPAK are formulated. The following requirements are applied to the fifth-generation charge-discharge software and hardware complex: increase the charge-discharge voltage to 150 V; increase the charge -discharge current to 150 A; introduce devices for pre-charge-pre-discharge of the battery into the KPA; increase the accuracy of measuring the voltage of each battery; provide remote operation from the control PC; writing cyclograms; logging and subsequent viewing of all test data


2015 ◽  
Vol 3 (7) ◽  
pp. 3659-3666 ◽  
Author(s):  
Gang Wang ◽  
Jun Peng ◽  
Lili Zhang ◽  
Jun Zhang ◽  
Bin Dai ◽  
...  

Nanostructured electrode materials have been extensively studied with the aim of enhancing lithium ion and electron transport and lowering the stress caused by their volume changes during the charge–discharge processes of electrodes in lithium-ion batteries.


2014 ◽  
Vol 6 (22) ◽  
pp. 20205-20213 ◽  
Author(s):  
Ting-Feng Yi ◽  
Zi-Kui Fang ◽  
Ying Xie ◽  
Yan-Rong Zhu ◽  
Shuang-Yuan Yang

2021 ◽  
Author(s):  
yitao lou ◽  
XianFa Rao ◽  
Jianjun Zhao ◽  
Jun Chen ◽  
Baobao Li ◽  
...  

In order to develop novel fast charge/discharge carbon anode materials, an organic hard carbon material (PTCDA-1100) is obtained by calcination of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) at high temperature of 1100 oC....


Author(s):  
Yuhao Huang ◽  
Yan Su ◽  
Akhil Garg

Abstract A new process decomposed calculation method is developed to compare the cycle based charge, discharge, net, and overall energy efficiencies of lithium-ion batteries. Multi-cycle measurements for both constant current (CC) and constant current to constant voltage (CC-CV) charge models have been performed. Unlike most conventional efficiency calculation methods with one mean open-circuit voltage (OCV) curve, two OCV curves are calculated separately for the charge and discharge processes. These two OCV curves help to clarify the intra-cycle charge, discharge, net, and overall energy efficiencies. The relationships of efficiencies versus state of charge, state of quantity, and scaled stresses are demonstrated. Efficiency degradation patterns versus cycle numbers and scaled stresses are also illustrated with the artificial neural network (ANN) prediction method. The decaying ratios of the overall efficiencies are about 2% and 0.3% in the first 30 cycles, for CC and CC-CV, respectively. Hence, efficiencies of the CC-CV model are more stable compared with the CC model, which are shown by both experimental and ANN prediction results.


2020 ◽  
Vol 1010 ◽  
pp. 314-320
Author(s):  
Mohamad Izha Ishak ◽  
Khairel Rafezi Ahmad ◽  
Rozana A.M. Osman ◽  
Mohd Sobri Idris

LiV3O8 layered structure was successfully synthesized by a conventional solid-state approach and subsequent heat-treated at 400, 450, 500 and 550 oC. The samples were characterized by XRD, SEM, TEM, BET. Electrochemical performance of LiV3O8 was investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge. The results showed that high purity of LiV3O8 with layered structure was formed. The morphology of the samples were mixed between nanorods and nanosheets structure. For electrochemical performance, results showed that LiV3O8 heat-treated at 500 oC performed a highest charge and discharge capacity of 212 and 172 mAh g-1, respectively. From electrochemical performance results made them a good candidate for cathode material for lithium-ion batteries application.


Sign in / Sign up

Export Citation Format

Share Document