Amplitude-Preserved Wave Equation: An Example to Image the Gas Hydrate System
Natural gas hydrate is an important energy source. Therefore, it is extremely important to provide a clear imaging profile to determine its distribution for energy exploration. In view of the problems existing in conventional migration methods, e.g., the limited imaging angles, we proposed to utilize an amplitude-preserved one-way wave equation migration based on matrix decomposition to deal with primary and multiple waves. With respect to seismic data gathered at the Chilean continental margin, a conventional processing flow to obtain seismic records with a high signal-to-noise ratio is introduced. Then, the imaging results of the conventional and amplitude-preserved one-way wave equation migration methods based on primary waves are compared, to demonstrate the necessity of implementing amplitude-preserving migration. Moreover, a simple two-layer model is imaged by using primary and multiple waves, which proves the superiority of multiple waves in imaging compared with primary waves and lays the foundation for further application. For the real data, the imaging sections of primary and multiple waves are compared. We found that multiple waves are able to provide a wider imaging illumination while primary waves fail to illuminate, especially for the imaging of bottom simulating reflections (BSRs), because multiple waves have a longer travelling path and carry more information. By imaging the actual seismic data, we can make a conclusion that the imaging result generated by multiple waves can be viewed as a supplementary for the imaging result of primary waves, and it has some guiding values for further hydrate and in general shallow gas exploration.