scholarly journals An Efficient Method to Compute Thermal Parameters of the Comfort Map Using a Decreased Number of Measurements

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5632
Author(s):  
Balázs Cakó ◽  
Erzsébet Szeréna Zoltán ◽  
János Girán ◽  
Gabriella Medvegy ◽  
Mária Eördöghné Miklós ◽  
...  

This paper presents an empirical approach to design ideal workplaces using the PMV-PPD (predicted mean vote–predicted percentage dissatisfied) method set in ISO 7730 in terms of thermal comfort. The key concept behind our method is that the overall employee satisfaction might be improved if they can select the most suitable desk based on their personal comfort preferences. To support desk sharing, we designed a comfort map toolkit, which can visualize the distribution of comfort parameters within office spaces. The article describes the steps to create comfort maps with methods already widely used, as well as a new one developed by our research team, including the measurement procedures and the theoretical background required.

2021 ◽  
Author(s):  
Balázs Cakó ◽  
Dalma Lovig ◽  
András Ózdi

AbstractDuring the following research project, the effects of an electrically heated window on the thermal comfort parameters of permanently occupied spaces were examined. A thermal manikin and a Testo 400 comfort-meter were used for the tests. To characterize the space, the predicted mean vote and predicted percentage of dis-satisfied method was applied. The examination of the comfort indices took place in the vicinity of an electrically heated window glass. During the measurements the surface temperature of the glazing was changed, alongside the distance from the glazing at which the measuring instruments were set up. The project aimed to assess the results measured by the thermal manikin and assess the usability of heated window glazing, taking thermal comfort into account.


2011 ◽  
Vol 71-78 ◽  
pp. 3516-3519 ◽  
Author(s):  
Xue Bin Yang ◽  
De Fa Sun ◽  
Xiang Jiang Zhou ◽  
Ling Ling Cai ◽  
Ying Ji

The indoor thermal comfort and its effect on building energy consumption have been conducted by literature reviewing in the study. The linear relationship and the related formulations of various thermal comfort indictors are summarized to evaluate the human comfort. These parameters include predicted mean vote, thermal sensation vote, adaptive predicted mean vote, thermal comfort vote, and thermal acceptability. Under different climatic or regional conditions, both relationships between thermal comfort parameters and indoor or outdoor air temperature, and between comfort vote and another comfort parameter, are summarized for their definition and formulation. The comfort parameters such as local air speed, neutral temperature, PMV set point and others will directly impact the building energy usage. It is of significance to seek an optimal alternative for energy savings.


Author(s):  
Danial Mohammadi ◽  
Simin Nasrabadi

Background: One way to achieve a standard heating, ventilating, and air conditioning system with maximum satisfaction is to use a thermal index to identify and determine the thermal comfort of people. In this study we intend to evaluate thermal comfort based on PMV-PPD (Predicted Mean Vote/Predicted Percentage Dissatisfied) model in workers of screening center for COVID-19. Methods: The study period was from March 1 to October 31, 2020. In this study, we used the ISO 7730 model to determinate PMV-PPD index. PMV index was used to determine thermal comfort at different scales in Birjand city with arid and hot climate. All data were analyzed using R software (version 3.3.0) and IBM SPSS statistics softwares. Results: The maximum and minimum recorded physical PMV values in the study period were observed in June as (2.09 ± 0.03) and March as (-1.27 ± 0.14), respectively. The amplitude of the thermal sense in the study period was varied between slightly cool (-1.5) and warm (+2.5). The PPD in spring was 40% which indicated slightly warm to hot condition. Conclusions: The October was the only month during the study in which thermal stress was in comfort or neutral thermal condition.  Our results suggest that thermal comfort has dimensions and indices which are helpful in managing energy consumption.


2014 ◽  
Vol 61 ◽  
pp. 970-974 ◽  
Author(s):  
Hyesim Han ◽  
Jinsook Lee ◽  
Jonghun Kim ◽  
Cheolyong Jang ◽  
Hakgeun Jeong

2018 ◽  
Vol 44 ◽  
pp. 00186
Author(s):  
Małgorzata Wesołowska ◽  
Marta Laska

The proper level of comfort conditions is one of the main goal when designing HVAC systems in buildings. It influences our self-being, our health and productivity. Thermal comfort is a complex issue and relates to indoor air parameters and personal factors. The publication presents the outcome of the research undertaken in one of the lecture room at Wroclaw University of Science and Technology, Poland. It consisted of measurements of comfort parameters, questionnaire survey and PMV and PPD calculations based on different approaches.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4947
Author(s):  
Nina Szczepanik-Scislo ◽  
Jacek Schnotale

This study aimed to develop a new concept for an air terminal device for a VAV (variable air volume) ventilation system that would improve overall ventilation efficiency under a varying air supply volume. In VAV systems, air volume is modified according to the thermal load in each ventilated zone. However, lowering the airflow may cause a lack of proper air distribution and lead to the degradation of hygienic conditions. To combat this phenomenon, an air terminal device with an adapting geometry to stabilize the air throw, such that it remains constant despite the changing air volume supplied through the ventilation system, was designed and studied. Simulations that were performed using the RNG k–ε model in the ANSYS Fluent application were later validated on a laboratory stand. The results of the study show that, when using the newly proposed terminal device with an adaptive geometry, it is possible to stabilize the air throw. The thermal comfort parameters such as the PMV (predicted mean vote) and PPD (predicted percentage of dissatisfied) proved that thermal comfort was maintained in a person-occupied area regardless of changing airflow though the ventilation system.


2016 ◽  
Vol 28 (1) ◽  
pp. 105-114 ◽  
Author(s):  
Sena Terliksiz ◽  
Fatma Kalaoğlu ◽  
Selin Hanife Eryürük

Purpose – Sleep is a vital and a basic activity of human life and it is a physiological need for human body. Sleep quality is directly influenced by the comfort conditions of sleep environment. The purpose of this paper is to define the role of textile materials utilized as bed fabrics on air and mass transfer from the human body. Design/methodology/approach – Thermal conductivity, thermal resistance, thickness, water vapour permeability and air permeability properties of fabrics were analyzed and statistically evaluated. Thermal conductivity and resistance measurements were performed in Alambeta test instrument. Water vapour permeability tests were done according to the Rotating Platform method, and air permeability was measured in FX 3300 Textest air permeability tester. Relationships between comfort parameters were statistically evaluated with correlation analysis. Findings – Comfort is a major concept in the determination of overall life quality as well as sleep quality of a resting person. Therefore academic studies about thermal comfort prediction of sleep environment and bed surface fabrics are of great importance. This study investigates conventional mattress ticking fabrics in terms of comfort parameters and defines the important fabric properties on comfort parameters. Originality/value – Sleep comfort is a promising area in textile comfort studies with its dynamics different from body thermal comfort during daily life. However, in general comfort studies are about garment materials which are in direct contact with the skin. This study tries to define the comfort status of textile materials which have indirect contact with the human body surface during sleep duration.


Vitruvian ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 47
Author(s):  
Tathia Edra Swasti

ABSTRAK Mall saat ini marak menggunakan clerestory sebagai salah satu upaya untuk penerangan alami pada siang hari. Namun, cahaya matahari pada sore hari (barat) akan menghasilkan cahaya matahari yang lebih panas dan silau dibandingkan cahaya matahari pada pagi hari (timur). Oleh karena itu, dengan pemakaian clerestory yang cukup besar pada bangunan, masalah panas tentu tak dapat dihindari. Begitu pula dengan glare yang berasal dari pantulan sinar matahari. Salah satu Mall yang menggunakan clerestory adalah Mall AEON BSD. Pengukuran suhu udara, temperatur efektif, kelembaban udara, kecepatan angin, PMV (Predicted Mean Vote) dan PPD (Predicted Percentage of Dissatisfied) dilaksanakan pada 4 waktu dengan 5 lokasi titik ukur yang memiliki kondisi berbeda untuk membuktikan bahwa clerestory dapat mempengaruhi kenyamanan termal. Disimpulkan bahwa titik 2 yaitu titik yang berdekatan dengan clerestory sisi kanan (ukurannya lebih kecil daripada clerestory sisi kiri) memiliki temperatur efektif dan kelembaban udara yang lebih rendah dari titik lain, dan kecepatan udara (dipengaruhi oleh hembusan AC) lebih tinggi dari titik lain. Responden merasa nyaman saat berada di titik tersebut.Titik paling nyaman menurut responden adalah titik 2 dengan TE rata-rata berkisar 27,4˚C, kelembaban udara rata-rata berkisar 52,2%, kecepatan udara rata-rata berkisar 0,15 m/s, PMV berkisar 0,5 dan PPD berkisar 12,7%. Dengan begitu semakin kecil ukuran skylight terbukti mempengaruhi kenyamanan termal dan membuat kenyamanan termal dapat tercapai. Kata Kunci: Mall, Clerestory, PMV, PPD, Kenyamanan Termal ABSTRACT Nowadays mall is decorated with clerestory as an effort to lighten naturally during the day. However, sunlight in the afternoon (west) will produce more sunlight and glare than sunlight in the morning (east). Therefore, with the use of a fairly large clerestory in buildings, the problem of heat certainly can not be avoided. Similarly, glare that comes from the reflection of sunlight. One of the malls that use clerestory is BSD AEON Mall. Measurement of air temperature, effective temperature, air humidity, wind speed, PMV (Predicted Mean Vote) and PPD (Predicted Percentage of Dissatisfied) carried out at 4 times within 5 measuring spots that have different conditions, proving that clerestory can affect thermal comfort. It was concluded that point 2, which is the point adjacent to the right side clerestory (smaller in size than the left side clerestory) has an effective temperature and lower air humidity than other points, and air velocity (affected by blowing AC) is higher than other points. Respondents felt comfortable when they were at that point. The most comfortable point according to respondents was point 2 with TE averaging around 27.4˚C, air humidity averaged 52.2%, the average air speed ranged from 0.15 m / s, PMV ranges from 0.5 and PPD ranges from 12.7%. Thus, the smaller size of the clerestory is affecting thermal comfort and thermal comfort can be achieved. Keywords: Mall, Clerestory, PMV, PPD, Thermal Comfort


Sign in / Sign up

Export Citation Format

Share Document