scholarly journals Use of Hydrogen as Fuel: A Trend of the 21st Century

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 311
Author(s):  
Charles Bronzo Barbosa Farias ◽  
Robson Carmelo Santos Barreiros ◽  
Milena Fernandes da da Silva ◽  
Alessandro Alberto Casazza ◽  
Attilio Converti ◽  
...  

The unbridled use of fossil fuels is a serious problem that has become increasingly evident over the years. As such fuels contribute considerably to environmental pollution, there is a need to find new, sustainable sources of energy with low emissions of greenhouse gases. Climate change poses a substantial challenge for the scientific community. Thus, the use of renewable energy through technologies that offer maximum efficiency with minimal pollution and carbon emissions has become a major goal. Technology related to the use of hydrogen as a fuel is one of the most promising solutions for future systems of clean energy. The aim of the present review was to provide an overview of elements related to the potential use of hydrogen as an alternative energy source, considering its specific chemical and physical characteristics as well as prospects for an increase in the participation of hydrogen fuel in the world energy matrix.

2021 ◽  
Author(s):  
Cintia de Faria Ferreira Carraro ◽  
André Celestino Martins ◽  
Ana Carolina da Silva Faria ◽  
Carla Cristina Almeida Loures

The search for energy alternatives from renewable and clean sources has been gaining prominence at the international level, due to the increased demand for energy and the future depletion of fossil fuels, coupled with the concern with environmental issues. The generation of electricity distributed from the use of biomass can contribute to the conservation of the environment, the diversification of the energy matrix, the national economic development, the generation of jobs in the agro-industry and in the distribution of clean energy, as a sustainable alternative. This chapter aims to present information related to the use of different residual biomass as an energy alternative for Brazil, with a focus on electricity generation, based on a bibliographic survey, where it is highlighted as the best sources of biomass for electricity generation in the country, observing the profitability and viability for logistics and national economy.


2021 ◽  
Vol 22 (2) ◽  
pp. 10-20
Author(s):  
Amadou Dioulde Donghol Diallo ◽  
Ma’an Fahmi Rashid Alkhatib ◽  
Md Zahangir Alam ◽  
Maizirwan Mel

Empty fruit bunch (EFB), a biomass-based waste, was deemed a potential replacement for fossil fuel. It is renewable and carbon neutral. The efficient management of this potential energy will help to deal with the problem associated with fossil fuels. However, a key parameter for evaluating the quality of raw material (EFB) as a fuel in energy applications is the calorific value (CV). When this CV is low, then its potential utilization as feedstock will be restricted. To tackle this shortcoming, we propose to add municipal solid waste to enhance energetic value. Thus, two major issues will be solved: managing solid residues and contributing an alternative energy source. This study aimed to investigate the possibility of mixing EFB and municipal solid waste (MSW) to make clean energy that is conscious of the environment (climate change) and sustainable development. The selected MSW, comprising of plastics, textiles, foam, and cardboard, were mixed, with EFB at various ratios. Proximate analysis was used to determine moisture content, ash, volatiles, and fixed carbon, whilst elemental analysis, is used to determine CHNS/O for MSW, EFB and their various mixtures. The CV of each element was also measured. The research revealed a significant increase in the calorific value of EFB by mixing it with MSW according to MSW/EFB ratios: 0.25; 0.42; 0.66; 1.00 and 1.50 the corresponding calorific values in (MJ/kg) were 19.77; 21.22; 22.67; 27.04 and 28.47 respectively. While the calorific value of pure EFB was 16.86 MJ/kg, the mixing of EFB with MSW promoted the increase in the CV of EFB to an average of 23.83MJ/kg. Another potential environmental benefit of applying this likely fuel was the low chlorine (0.21 wt. % to 0.95 wt. %) and sulfur concentrations (0.041 wt. % to 0.078 wt.%). This potential fuel could be used as solid refuse fuel (SRF) or refuse-derived fuel (RDF) in a pyrolysis or gasification process with little to no environmental effects. ABSTRAK: Tandan buah kosong (EFB), sisa berasaskan biojisim, adalah berpotensi sebagai pengganti bahan bakar fosil. Ia boleh diperbaharui dan karbon neutral. Pengurusan berkesan pada potensi tenaga ini dapat membantu mengatasi masalah melibatkan bahan bakar fosil. Namun, kunci parameter bagi menilai kualiti bahan mentah (EFB) sebagai bahan bakar dalam aplikasi tenaga adalah nilai kalori (CV). Apabila CV rendah, potensi menjadi stok suapan adalah terhad. Sebagai penyelesaian, kajian ini mencadangkan sisa pepejal bandaran ditambah bagi meningkatkan nilai tenaga. Oleh itu, dua isu besar dapat diselesaikan: mengurus sisa pepejal dan menambah sumber tenaga alternatif. Kajian ini bertujuan mengkaji potensi campuran tandan buah kosong (EFB) dan sisa pepejal bandaran (MSW) bagi menghasilkan tenaga bersih dari sudut persekitaran (perubahan iklim) dan pembangunan lestari. Pemilihan MSW, terdiri daripada plastik, tekstil, gabus dan kadbod, dicampurlan dengan pelbagai nisbah EFB. Analisis proksimat telah digunakan bagi mendapatkan  kandungan kelembapan, abu, ruapan, dan karbon tetap, manakala analisis asas telah digunakan bagi mendapatkan CHNS/O bersama MSW, EFB dan pelbagai campuran lain. Nilai kalori (CV) setiap elemen turut diukur. Dapatan kajian menunjukkan penambahan ketara dalam nilai kalori EFB dengan campuran bersama MSW berdasarkan nisbah MSW/EFB 0.25; 0.42; 0.66; 1.00 dan 1.50 nilai kalori sepadan (MJ/kg) adalah 19.77; 21.22; 22.67; 27.04 dan 28.47 masing-masing. Manakala nilai kalori EFB tulen adalah 16.86 MJ/kg, campuran EFB dan MSW menunjukkan kenaikan CV dengan EFB pada purata 23.83MJ/kg. Antara potensi semula jadi lain adalah dengan mencampurkan bahan bakar ini dengan kalori rendah (0.21 wt. % kepada 0.95 wt. %) dan kepekatan sulfur (0.041 wt. % kepada 0.078 wt.%). Bahan bakar ini berpotensi sebagai bahan bakar pepejal sampah (SRF) atau bahan bakar yang terhasil dari pepejal sampah (RDF) melalui proses pirolisis atau proses gasifikasi yang sedikit atau tiada kesan langsung terhadap persekitaran.


2017 ◽  
Vol 8 (2) ◽  
pp. 47
Author(s):  
Kris Hariyanto ◽  
Benedictus Mardwianta

Biogas is an alternative energy sources as a substitute for fossil fuels in household activities daily, but there are obstacles in the use of biogas, namely the difficulty of arranging a flame that is stable and fuel consumption relatively less efficient biogas. So it takes a design development system that will produce a burning stove produces biogas-fueled stove fits the purpose of research, on the other hand biogas stove should be simple, cheap production price, maximum efficiency and safe to use. Stages in the study include: desk assessment, creation of objective requirements design, manufacture conceptual and basic design, manufacture real stove. As for knowing the performance of the stove carried stove performance tests are: test flame stability and efficiency. The results showed that the efficiency of the biogas stove design results in only 31 percent higher than the efficiency of biogas stoves old design, while the fuel consumption of biogas stoves new design is 16 percent lower when compared with fuel consumption of biogas stoves old design. In terms of manufacture and ease of repair and maintenance of gas cookers new design is more easily repaired and easy to make and simple in form compared with the old design biogas stoves.


Subject Efforts to reduce Mexico's dependence on fossil fuels. Significance President Enrique Pena Nieto's energy reforms aim to boost investment in Mexico's hydrocarbons industry. However, they are also intended to reduce the country's reliance on fossil fuels by developing the biofuels sector and renewable energies, such as solar, wind and geothermal power. Among the issues that the new legislature, which starts on September 1, will have to address are three pieces of secondary legislation that are key to achieving the government's goal of increasing the share of renewables in Mexico's energy matrix. Impacts Unless the state improves and expands transmission capacity, development of the sector will be limited. Renewables will face stiff competition from the hydrocarbons sector, which has received much greater incentives for investment. Clean energy laws will continue to encounter opposition from businesses if power derived from renewables does not become cheaper.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4593 ◽  
Author(s):  
Raluca-Andreea Felseghi ◽  
Elena Carcadea ◽  
Maria Simona Raboaca ◽  
Cătălin Nicolae TRUFIN ◽  
Constantin Filote

The climate changes that are becoming visible today are a challenge for the global research community. The stationary applications sector is one of the most important energy consumers. Harnessing the potential of renewable energy worldwide is currently being considered to find alternatives for obtaining energy by using technologies that offer maximum efficiency and minimum pollution. In this context, new energy generation technologies are needed to both generate low carbon emissions, as well as identifying, planning and implementing the directions for harnessing the potential of renewable energy sources. Hydrogen fuel cell technology represents one of the alternative solutions for future clean energy systems. This article reviews the specific characteristics of hydrogen energy, which recommends it as a clean energy to power stationary applications. The aim of review was to provide an overview of the sustainability elements and the potential of using hydrogen as an alternative energy source for stationary applications, and for identifying the possibilities of increasing the share of hydrogen energy in stationary applications, respectively. As a study method was applied a SWOT analysis, following which a series of strategies that could be adopted in order to increase the degree of use of hydrogen energy as an alternative to the classical energy for stationary applications were recommended. The SWOT analysis conducted in the present study highlights that the implementation of the hydrogen economy depends decisively on the following main factors: legislative framework, energy decision makers, information and interest from the end beneficiaries, potential investors, and existence of specialists in this field.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 892 ◽  
Author(s):  
Kuan Shiong Khoo ◽  
Wen Yi Chia ◽  
Doris Ying Ying Tang ◽  
Pau Loke Show ◽  
Kit Wayne Chew ◽  
...  

The world energy production trumped by the exhaustive utilization of fossil fuels has highlighted the importance of searching for an alternative energy source that exhibits great potential. Ongoing efforts are being implemented to resolve the challenges regarding the preliminary processes before conversion to bioenergy such as pretreatment, enzymatic hydrolysis and cultivation of biomass. Nanotechnology has the ability to overcome the challenges associated with these biomass sources through their distinctive active sites for various reactions and processes. In this review, the potential of nanotechnology incorporated into these biomasses as an aid or addictive to enhance the efficiency of bioenergy generation has been reviewed. The fundamentals of nanomaterials along with their various bioenergy applications were discussed in-depth. Moreover, the optimization and enhancement of bioenergy production from lignocellulose, microalgae and wastewater using nanomaterials are comprehensively evaluated. The distinctive features of these nanomaterials contributing to better performance of biofuels, biodiesel, enzymes and microbial fuel cells are also critically reviewed. Subsequently, future trends and research needs are highlighted based on the current literature.


2016 ◽  
Vol 16 (2) ◽  
pp. 77-100
Author(s):  
Christina Alam

For the past several years, the Obama administration has become increasingly vocal with regards to the need to prevent global warming and abandon fossil fuels in favor of clean energy.[1] And solar energy seems like the obvious first choice in furtherance of those goals. However, in the race for solar energy, state lawmakers should not sacrifice efficiency and welfare in favor of speedy results. Pennsylvania authorities made a mistake: by adopting one of the most aggressive solar initiatives in the country, they sacrificed hundreds of people who simply cannot afford solar technologies. Specifically, numerous reports and publications have suggested that Pennsylvania Alternative Energy Portfolio Standards, including its solar requirement, create cross subsidizing of the owners of solar panels at the expense of all other energy consumers, distorting the energy market and increasing instances of free-riding. The groups most affected are low-income populations. Pennsylvania can still, however, successfully pursue its solar initiatives subject to certain changes in its law and policy that address the negative effects of its current regime.


Author(s):  
Rodrigo Jambeiro Pinto ◽  
Vivianni Marques Leite dos Santos

The significant concentration of the world energy matrix in polluting sources and prices subject to instabilities, such as fossil fuels, has raised the search for countries by technologies and alternative sources, among them wind energy, as a way to increase security in energy supply and reduce the emission of gases responsible for the greenhouse effect. Thus, through a bibliographical research, the objective of this work is to systematize the potential of wind energy, through a study of evolution, challenges and perspectives, consolidate in the Brazilian energy matrix and contribute, in the long run, to a greater decentralization of and less dependence on non-renewable sources. In this sense, Brazil, benefited by natural factors and the development of the national industry, has favorable conditions for the exploration of this form of energy and has experienced great evolution, with wind energy being among the fastest growing in Brazil and being the second most competitive source of energy Brazilian energy matrix. However, the need to improve the logistics infrastructure, expand transmission lines, improvement in the planning of the start-up dates of wind power plants, as well as create a new policy to encourage renewable energies and make greater investments in research and development appear as important goals to be achieved so that wind energy can in fact consolidate in the national scenario.


2019 ◽  
Vol 137 ◽  
pp. 01022 ◽  
Author(s):  
Katarzyna Stolecka ◽  
Andrzej Rusin

Energy needs of many countries are largely covered by energy obtained from fossil fuels. This in turn involves environmental pollution and greenhouse gas emissions. The growing environmental awareness and the need to prevent climate changes mean that clean energy and alternative energy sources are still a significant research issue. One of the most important technologies for efficient and low-carbon energy generation is the gasification process and synthesis gas production. Worldwide, there are now more than 270 such installations. More installations are under construction. Syngas is a mixture of hydrogen and carbon monoxide. Depending on the feedstock, it can also contain smaller amounts of carbon dioxide, methane and nitrogen. The gasification process consists of four stages: syngas production, storage, transport and utilization, e.g. as fuel. Because syngas is mainly composed of flammable and toxic gases, in the event of an uncontrolled release into the atmosphere these processes may pose a potential hazard to humans and the environment. The paper presents the results of analyses related to hazards resulting from an uncontrolled release of gas at the stage of the gas storage, before it is transported or finally used. Hazard scenarios are presented and the probability of their occurrence as well as the consequences for humans and the environment are determined.


2019 ◽  
Vol 124 ◽  
pp. 04018
Author(s):  
E. A. Konnikov ◽  
K. V. Osipova ◽  
N. A. Yudina ◽  
E.P. Korsak

The energy crisis of 1973-1974 showed that it is difficult to constantly increase the power supply of production, based only on traditional energy sources. The power supply of society is the basis of its scientific and technological progress. It means that it is necessary to introduce unconventional, alternative energy sources more widely. Unlike fossil fuels, unconventional forms of energy are not limited to geologically reserves. Their use and consumption does not lead to the inevitable exhaustion of stocks. However, currently, the reform of world energy markets and increasing the share of renewable energy sources in their structure is a long and innovative process. Lots of countries (Russia in particular) bear significant risks because of reforming their own energy market, which causes a slight increase in the share of renewable energy sources. In this regard, the purpose of this study is to analyse the influence of environmental factors on the development of renewable energy sources in Russia. The result of this study is a system of econometric equations, which allows to evaluate the impact of changes in key drivers of the development of the renewable energy market.


Sign in / Sign up

Export Citation Format

Share Document