scholarly journals Osteoblast-like Cell Proliferation, ALP Activity and Photocatalytic Activity on Sintered Anatase and Rutile Titanium Dioxide

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4414
Author(s):  
Yukiko Yokoi

This study aimed to create a biomaterial from titanium dioxide (TiO2), which has been known to have photocatalytic and bone formation promoting effects. I expected that anatase titanium dioxide-based implants could promote bone augmentation and induce bone formation. Powdery anatase TiO2 was compression molded and sintered at 700, 800, 900, and 1000 °C to prepare sintered compact samples. X-ray diffraction and scanning electron microscopy were used to observe the surface of these samples. Furthermore, mouse osteoblast-like cells (MC3T3-E1 cell line) were seeded on the samples sintered at different temperatures, and cell proliferation was observed to evaluate the cell proliferation of the samples. The sample sintered at 700 °C was composed of anatase TiO2. The samples sintered at 800 °C and 900 °C were confirmed to consist of a mixture of anatase and rutile TiO2 crystalline phases. Moreover, the sample sintered at 700 and 800 °C, which contained anatase TiO2, showed remarkable photocatalytic activity. Those samples sintered at 1000 °C were transformed to the rutile TiO2. The cell proliferation after 7–14-days culturing revealed that cells cultured on the 700 °C sample decreased in number immediately after initiation of culturing. The cells cultured on TiO2 sintered at 900 °C markedly proliferated over time with an increase in the alkaline phosphatase activity, showing good MC3T3-E1 cell compatibility of the samples. The sample sintered at 1000 °C, which is rutile TiO2, showed the highest increase.

2005 ◽  
Vol 284-286 ◽  
pp. 573-576 ◽  
Author(s):  
Takao Saito ◽  
Hikoshiro Hayashi ◽  
K. Uoe ◽  
Takashi Kizuki ◽  
Kay Teraoka ◽  
...  

Our experiments of mouse osteoblast-like MC3T3-E1 cells cultured on a glass substrate showed that as surface roughness of a substrate increased, cell proliferation, cell differentiation and subsequent mineralization were reduced.


Author(s):  
Sonal Rani, Ritika Sharma and Neetu Rani

The study aims at application of Nano scaled titanium dioxide nanoparticles with photocatalytic activity. The titanium dioxide nanoparticles were applied by a dip-pad–dry-cure process with the help of binders to textile materials for producing photocatalytic self-cleaning thin films. The study was focused on the application and characterization of titanium dioxide. The photocatalytic activity of TiO2 nanoparticles was studied against Methyl Orange degradation test in solar box test instrument by dissolving TiO2 nano-composites in an aqueous solution at low temperature. Polyester is most widely used synthetic fibre in textile and clothing. In this study, Anatase TiO2 nanoparticles are dispersed at room temperature via Sonication and treated polyester fabrics exhibit significant photocatalytic self-cleaning properties of degradation of coffee stains. The mechanical properties like bending length, breaking strength, air permeability and durability of TiO2 treated polyester fabrics were accessed. The study discovered that anatase TiO2 based self-cleaning system shows potential systems for self-cleaning textiles having high potential in commercialization being environmentally affable, energy and water saving, low cost as of reduced laundry cycles of the finished textiles.


2017 ◽  
Vol 10 (05) ◽  
pp. 1750059 ◽  
Author(s):  
Wenhao Dong ◽  
Feng Pan ◽  
Hailong Wang

Recently, semiconductor nanomaterials with exposed high percentage of reactive facets have attracted great attention due to their excellent photocatalytic performances. In this report, anatase titanium dioxide (TiO2) nanobelts with dominant {100} facets were synthesized by a hydrothermal method. The percentage of desired {100} facets were as high as up to 74.8%, and the photoactivity of anatase TiO2 {100} and {001} facets were evaluated and compared by methylene blue and rhodamine B photodegradation. The {100} facets show higher photocatalytic activity than {001} facets, which could be ascribed to the superior electronic band structure and higher surface active sites density of {100} facets than that of {001} facets.


Author(s):  
Seremak Wioletta ◽  
Baszczuk Agnieszka ◽  
Jasiorski Marek ◽  
Gibas Anna ◽  
Winnicki Marcin

AbstractThis work shows that the titanium dioxide coatings obtained by low-pressure cold gas spraying with the use of the sol–gel amorphous TiO2 powder are characterized by photocatalytic activity despite their partial amorphous content. Moreover, the research outcome suggests that the decomposition rate of organic pollutants is enhanced after long-term exposure to moisture. The condensation humidity test is not detrimental to the continuity and integrity of the coating, but the phase composition of coatings changes—with the exposure to water vapor, the portion of the amorphous phase crystallizes into brookite. The mechanism responsible for the conversion of amorphous TiO2 into brookite is attributed to the water-driven dissolution and reprecipitation of TiO6 octahedra. It has been shown that an additional parameter necessary for the stabilization of the brookite is the oxygen depletion of the amorphous structure of titanium dioxide. Considering the results presented in this paper and the advantages of a portable, low-pressure cold spray system for industrial applications, it is expected that TiO2 coatings produced from a sol–gel feedstock powder can be further developed and tested as efficient photocatalysts.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 112
Author(s):  
Tamás Gyulavári ◽  
Kata Kovács ◽  
Klára Magyari ◽  
Kornélia Baán ◽  
Anna Szabó ◽  
...  

Carbon spheres were applied as templates to synthesize titanium dioxide hollow spheres. The templates were purified with either ethanol or acetone, and the effects of this treatment on the properties of the resulting titania were investigated. The photocatalytic activity of the catalysts was measured via the decomposition of phenol model pollutant under visible light irradiation. It was found that the solvent used for the purification of the carbon spheres had a surprisingly large impact on the crystal phase composition, morphology, and photocatalytic activity. Using ethanol resulted in a predominantly rutile phase titanium dioxide with regular morphology and higher photocatalytic activity (r0,phenol = 3.9 × 10−9 M∙s−1) than that containing mainly anatase phase prepared using acetone (r0,phenol = 1.2 × 10−9 M∙s−1), surpassing the photocatalytic activity of all investigated references. Based on infrared spectroscopy measurements, it was found that the carbon sphere templates had different surface properties that could result in the appearance of carbonate species in the titania lattice. The presence or absence of these species was found to be the determining factor in the development of the titania’s properties.


2007 ◽  
Vol 539-543 ◽  
pp. 710-715
Author(s):  
Kotaro Kuroda ◽  
Ryoichi Ichino ◽  
Masazumi Okido

Hydroxyapatite (HAp) coatings were formed on cp titanium plates and rods by the thermal substrate method in an aqueous solution that included 0.3 mM Ca(H2PO4)2 and 0.7 mM CaCl2. The coating experiments were conducted at 40-140 oC and pH = 8 for 15 or 30 min. The properties for the coated samples were studied using XRD, EDX, FT-IR, and SEM. All the specimens were covered with HAp, which had different surface morphologies such as net-like, plate-like and needle-like. After cleaning and sterilization, all the coated specimens were subjected to in vivo and vitro testing. In the in vitro testing, the mouse osteoblast-like cells (MC3T3-E1) were cultured on the coated and non-coated specimens for up to 30 days. Moreover, the specimens (φ2 x 5 mm) were implanted in rats femoral for up to 8 weeks, the osseoinductivity on them were evaluated. In in vitro evaluations, there were not significant differences between the different surface morphologies. In in vivo evaluations, however, two weeks postimplantation, new bone formed on both the HAp coated and non-coated titanium rods in the cancellous and cortical bone. The bone-implant contact ratio, which was used for the evaluation of new bone formation, was significantly dependent on the surface morphology of the HAp, and the results demonstrated that the needle-like coating appears to promote rapid bone formation.


Sign in / Sign up

Export Citation Format

Share Document