scholarly journals Piezoelectric A15B16C17 Compounds and Their Nanocomposites for Energy Harvesting and Sensors: A Review

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6973
Author(s):  
Piotr Szperlich

Interest in pyroelectrics and piezoelectrics has increased worldwide on account of their unique properties. Applications based on these phenomena include piezo- and pyroelectric nanogenerators, piezoelectric sensors, and piezocatalysis. One of the most interesting materials used in this growing field are A15B16C17 nanowires, an example of which is SbSI. The latter has an electromechanical coupling coefficient of 0.8, a piezoelectric module of 2000 pC/N, and a pyroelectric coefficient of 12 × 10−3 C/m2K. In this review, we examine the production and properties of these nanowires and their composites, such as PAN/SbSI and PVDF/SbSI. The generated electrical response from 11 different structures under various excitations, such as an impact or a pressure shock, are presented. It is shown, for example, that the PVDF/SbSI and PAN/SbSI composites have well-arranged nanowires, the orientation of which greatly affects the value of its output power. The power density for all the nanogenerators based upon A15B16C17 nanowires (and their composites) are recalculated by use of the same key equation. This enables an accurate comparison of the efficiency of all the configurations. The piezo- and photocatalytic properties of SbSI nanowires are also presented; their excellent ability is shown by the high reaction kinetic rate constant (7.6 min−1).

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7863
Author(s):  
Mehwish Hanif ◽  
Varun Jeoti ◽  
Mohamad Radzi Ahmad ◽  
Muhammad Zubair Aslam ◽  
Saima Qureshi ◽  
...  

Lately, wearable applications featuring photonic on-chip sensors are on the rise. Among many ways of controlling and/or modulating, the acousto-optic technique is seen to be a popular technique. This paper undertakes the study of different multilayer structures that can be fabricated for realizing an acousto-optic device, the objective being to obtain a high acousto-optic figure of merit (AOFM). By varying the thicknesses of the layers of these materials, several properties are discussed. The study shows that the multilayer thin film structure-based devices can give a high value of electromechanical coupling coefficient (k2) and a high AOFM as compared to the bulk piezoelectric/optical materials. The study is conducted to find the optimal normalised thickness of the multilayer structures with a material possessing the best optical and piezoelectric properties for fabricating acousto-optic devices. Based on simulations and studies of SAW propagation characteristics such as the electromechanical coupling coefficient (k2) and phase velocity (v), the acousto-optic figure of merit is calculated. The maximum value of the acousto-optic figure of merit achieved is higher than the AOFM of all the individual materials used in these layer structures. The suggested SAW device has potential application in wearable and small footprint acousto-optic devices and gives better results than those made with bulk piezoelectric materials.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 397
Author(s):  
Yu-Chen Chang ◽  
Ying-Chung Chen ◽  
Bing-Rui Li ◽  
Wei-Che Shih ◽  
Jyun-Min Lin ◽  
...  

In this study, piezoelectric zinc oxide (ZnO) thin film was deposited on the Pt/Ti/SiNx/Si substrate to construct the FBAR device. The Pt/Ti multilayers were deposited on SiNx/Si as the bottom electrode and the Al thin film was deposited on the ZnO piezoelectric layer as the top electrode by a DC sputtering system. The ZnO thin film was deposited onto the Pt thin film by a radio frequency (RF) magnetron sputtering system. The cavity on back side for acoustic reflection of the FBAR device was achieved by KOH solution and reactive ion etching (RIE) processes. The crystalline structures and surface morphologies of the films were analyzed by X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM). The optimized as-deposited ZnO thin films with preferred (002)-orientation were obtained under the sputtering power of 80 W and sputtering pressure of 20 mTorr. The crystalline characteristics of ZnO thin films and the frequency responses of the FBAR devices can be improved by using the rapid thermal annealing (RTA) process. The optimized annealing temperature and annealing time are 400 °C and 10 min, respectively. Finally, the FBAR devices with structure of Al/ZnO/Pt/Ti/SiNx/Si were fabricated. The frequency responses showed that the return loss of the FBAR device with RTA annealing was improved from −24.07 to −34.66 dB, and the electromechanical coupling coefficient (kt2) was improved from 1.73% to 3.02% with the resonance frequency of around 3.4 GHz.


2016 ◽  
Vol 848 ◽  
pp. 339-343
Author(s):  
Xiao Kun Zhao ◽  
Bo Ping Zhang ◽  
Lei Zhao ◽  
Li Feng Zhu

The modified behavior of the phase transition temperatures (TO-T and/or TC) between orthorhombic (O), tetragonal (T) and cubic (C) that caused by doping Sb5+ in (Li0.052Na0.493K0.455)(Nb1-xSbx)O3 (LNKNSx) ceramics was reported in the present investigation. The results show that differing from the insensitive TO-T to the Sb5+ content, TC splits into two peaks TCI and TCII when doping Sb5+. The decreased TCI by raising x may be ascribed to the Sb-rich grains and the settled TCII round 480 °C resulting from the Sb-lack ones. The enhanced piezoelectric coefficient d33 value of 263 pC/N and planar mode electromechanical coupling coefficient kp value of 42.5% at x=0.052 can be attributed to the polymorphic phase boundary (PPB) behavior with an appropriate ratio between T and O phases without any second phase.


2014 ◽  
Vol 1061-1062 ◽  
pp. 83-86
Author(s):  
Hong Wu ◽  
De Yi Zheng

In this paper, the effects of different sintering temperature on the microstructure and piezoelectric properties of Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3(PNZZT) ceramic samples were investigated. The Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3 ceramics materials was prepared by a conventional mixed oxide method. In the period of the experiment, the relationship between crystallographic phase and microstructure were analyzed by X-ray diffraction(XRD) and scanning electron microscopy(SEM) respectively. The XRD patterns shows that all of the ceramic samples are with a tetragonal perovskite structure. Along with sintering temperature increased and the x is 0.03, the grain size gradually become big. Through this experiment, it has been found that when the x is 0.03 and sintered at 1130°C for 2 h, the grains grow well, the grain-boundary intersection of the sample combined well and the porosity of the ceramics decreased, an excellent comprehensive electrical properties of the Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3 samples can be obtained. Its best electrical properties are as follows: dielectric constant (ε) is 1105, dielectric loss(tg) is 0.017, electromechanical coupling coefficient (Kp) is 0.287, piezoelectric constant(d33) is 150PC/N


2004 ◽  
Vol 14 (03) ◽  
pp. 837-846 ◽  
Author(s):  
GANG BU ◽  
DAUMANTAS CIPLYS ◽  
MICHAEL S. SHUR ◽  
LEO J. SCHOWALTER ◽  
SANDRA B. SCHUJMAN ◽  
...  

We report on the velocity V and the electromechanical coupling coefficient K2 of the first and the second leaky surface acoustic waves in various propagation directions in the a-plane AlN single-crystal. For c-propagation direction, the second leaky wave exhibited the velocity of 11016 m/s and K2 of 0.45%. For this direction, the temperature coefficient of frequency was found to be -30 ppm/°C. A near match of the velocities of the plane and leaky waves in the a-plane AlN allowed us to establish analytical relationships between the piezoelectric and elastic constants. A full set of elastic and piezoelectric constants of AlN has been evaluated by fitting the measured and calculated dependencies of velocities and electromechanical coupling coefficients on the propagation direction for both Rayleigh and leaky waves.


2002 ◽  
Vol 743 ◽  
Author(s):  
Sverre V. Pettersen ◽  
Thomas Tybell ◽  
Arne Rønnekleiv ◽  
Stig Rooth ◽  
Veit Schwegler ◽  
...  

ABSTRACTWe report on fabrication and measurement of a surface acoustic wave resonator prepared on ∼10m thick GaN(0001) films. The films were grown by metal-organic vapor phase epitaxy on a c-plane sapphire substrate. The surface morphology of the films were examined with scanning electron and atomic force microscopy. A metallic bilayer of Al/Ti was subsequently evaporated on the nitride film surface. Definition of the resonator interdigital transducers, designed for a wavelength of λ=7.76m, was accomplished with standard UV lithography and lift-off. S-parameter measurements showed a resonator center frequency f0=495MHz at room temperature, corresponding to a surface acoustic wave velocity of 3844m/s. The insertion loss at center frequency was measured at 8.2dB, and the loaded Q-factor was estimated at 2200. Finally, measurements of the resonator center frequency for temperatures in the range 25–155°C showed a temperature coefficient of -18ppm/°C. The intrinsic GaN SAW velocity and electromechanical coupling coefficient were estimated at νSAW=383 1m/s and K2=1.8±0.4·10−3.


Sign in / Sign up

Export Citation Format

Share Document