scholarly journals Preparation of a ZnO Nanostructure as the Anode Material Using RF Magnetron Sputtering System

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 215
Author(s):  
Seokwon Lee ◽  
Yeon-Ho Joung ◽  
Yong-Kyu Yoon ◽  
Wonseok Choi

In this study, a four-inch zinc oxide (ZnO) nanostructure was synthesized using radio frequency (RF) magnetron sputtering to maximize the electrochemical performance of the anode material of a lithium-ion battery. All materials were grown on cleaned p-type silicon (100) wafers with a deposited copper layer inserted at the stage. The chamber of the RF magnetron sputtering system was injected with argon and oxygen gas for the growth of the ZnO films. A hydrogen (H2) reduction process was performed in a plasma enhanced chemical vapor deposition (PECVD) chamber to synthesize the ZnO nanostructure (ZnO NS) through modification of the surface structure of a ZnO film. Field emission scanning electron microscopy and atomic force microscopy were performed to confirm the surface and structural properties of the synthesized ZnO NS, and cyclic voltammetry was used to examine the electrochemical characteristics of the ZnO NS. Based on the Hall measurement, the ZnO NS subjected to H2 reduction had a higher electron mobility and lower resistivity than the ZnO film. The ZnO NS that was subjected to H2 reduction for 5 min and 10 min had average roughness of 3.117 nm and 3.418 nm, respectively.

2011 ◽  
Vol 239-242 ◽  
pp. 777-780
Author(s):  
Ting Zhi Liu ◽  
Shu Wang Duo ◽  
C Y Hu ◽  
C B Li

ZnO films were deposited on nanostructured Al (n-Al) /glass substrate by RF magnetron sputtering. The results shows that the relation (I (002) /I (100) ≈ I annealed (002)/I annealed (100) ≈1.1) shows the rough n-Al surface is suitable for the growth of a-axis orientation. Meanwhile, the influences of substrate roughness, crystallinity and (101) plane of ZnO film deposited on n-Al layer have been discussed. XPS implies more oxygen atoms are bound to Aluminum atoms, which result in the increase of high metallic Zn in the film.


2011 ◽  
Vol 418-420 ◽  
pp. 293-296
Author(s):  
Qiu Yun Fu ◽  
Peng Cheng Yi ◽  
Dong Xiang Zhou ◽  
Wei Luo ◽  
Jian Feng Deng

Abstract. In this article, nano-ZnO films were deposited on SiO2/Si (100) substrates by RF (radio frequency) magnetron sputtering using high purity (99.99%) ZnO target. The effects of deposition time and annealing temperature have been investigated. XRD (X-ray diffraction) and FSEM (Field Emission Scanning Electron Microscopy) were employed to characterize the quality of the films. The results show that the ZnO film with thickness of 600nm annealed at 900°C has higher quality of both C-axis orientation and crystallization. And for the Zone film with thickness of 300nm annealed at 850°C, the quality of both C-axis orientation and crystallization is higher than that annealed at 900°C and 950°C.


2012 ◽  
Vol 271-272 ◽  
pp. 301-304
Author(s):  
Feng Xu ◽  
Sheng Nan Sun ◽  
Yi Xin Wang ◽  
Jia Jia Cao ◽  
Zi Han Wang ◽  
...  

ZnO film and Cu2S/ZnO bilays on the glass substrate were fabricated by RF magnetron sputtering. We carried out the experiments by adjusting the thickness of Cu2S on ZnO layer. The performance of Cu2S/ZnO on the transparency, conduction and photocatalysis were investigated. The photocatalytic experiments showed a good photocatalytic activity for photodegradation of methyl orange.


2007 ◽  
Vol 336-338 ◽  
pp. 567-570
Author(s):  
Chong Mu Lee ◽  
Anna Park ◽  
Young Joon Cho ◽  
Hyoun Woo Kim ◽  
Jae Gab Lee

It is very desirable to grow ZnO epitaxial films on Si substrates since Si wafers with a high quality is available and their prices are quite low. Nevertheless, it is not easy to grow ZnO films epitaxially on Si substrates directly because of formation of an amorphous SiO2 layer at the interface of ZnO and Si. A Zn film and an undoped ZnO film were deposited sequentially on an (100) Si substrate by rf magnetron sputtering. The sample was annealed at 700°C in a nitrogen atmosphere. X-ray diffraction (XRD), photoluminescence (PL) and atomic force microscopy (AFM) analyses were performed to investigate the cristallinity and surface morphology of the ZnO film. According to the analysis results the crystallinity of a ZnO thin film deposited by rf magnetron sputtering is substantially improved by using a Zn buffer layer. The highest ZnO film quality is obtained with a 110nm thick Zn buffer layer. The surface roughness of the ZnO thin film increases as the Zn buffer layer thickness increases.


2007 ◽  
Vol 336-338 ◽  
pp. 581-584
Author(s):  
Chong Mu Lee ◽  
Choong Mo Kim ◽  
Sook Joo Kim ◽  
Yun Kyu Park

ZnO thin films were deposited on sapphire (α-Al2O3) substrates by RF magnetron sputtering at substrate temperatures of 500, 600, 650 and 700°C for 3h at rf-powers ranging from 60 to 120 W. The FWHM of the XRD (0002) peak for the ZnO film was reduced down to 0.07° by optimizing the chamber pressure at a substrate temperature of 700°C. Sharp near-band-edge emission was observed in the photoluminescence (PL) spectrum for the ZnO film grown at room temperature. Excess RF power aggravates the crystallinity and the surface roughness of the ZnO thin film. Pole figure, AES and PL analysis results confirm us that RF magnetron sputtering offers ZnO films with a lower density of crystallographic defects. ZnO films with a high quality can be obtained by optimizing the substrate temperature, RF power, and pressure of the RF magnetron sputtering process.


2007 ◽  
Vol 1035 ◽  
Author(s):  
Seol Hee Choi ◽  
Chan Hyoung Kang

AbstractHighly c-axis oriented, dense, and fine-grained polycrystalline ZnO films with smooth surface and high resistivity were deposited on 4 inch silicon wafers by employing ZnO targets in a radio-frequency (RF) magnetron sputtering system. By changing applied RF power, substrate temperature and O2/Ar gas ratio, the optimum process parameters were found to be 150 W, 200 °C and 30/70, respectively. Applying the ZnO films deposited under these optimum conditions, surface acoustic wave (SAW) devices of ZnO/IDT/SiO2/Si structure were fabricated by conventional photolithography and etching processes. The interdigital transducers (IDT), made of the aluminum deposited by DC magnetron sputter, were patterned as 2.5/2.5 μm of finger width/spacing. Another type of SAW filter of IDT/ZnO/diamond/Si structure was fabricated. In this structure, high-quality nanocrystalline diamond (NCD) films were deposited on 4 inch silicon wafers by direct current (DC) plasma assisted chemical vapor deposition method using H2-CH4 mixture as precursor gas. On the top of the diamond films, ZnO films were deposited under the optimum conditions. The aluminum IDT pattern was fabricated on the ZnO/diamond layered films. The characteristics of the fabricated SAW devices were evaluated in terms of center frequency, insertion loss, and wave propagation velocity.


2010 ◽  
Vol 10 (3) ◽  
pp. S463-S467 ◽  
Author(s):  
Kyu Ung Sim ◽  
Seung Wook Shin ◽  
A.V. Moholkar ◽  
Jae Ho Yun ◽  
Jong Ha Moon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document