scholarly journals Novel Composite Planks Made of Shape Memory Polyurethane Foaming Material with Two-Step Foaming Process

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 275
Author(s):  
Jan-Yi Lin ◽  
Mei-Chen Lin ◽  
Bing-Chiuan Shiu ◽  
Ching-Wen Lou ◽  
Jia-Horng Lin ◽  
...  

In this study, shape memory polyurethane (SMP) foaming material is used as the main material that is incorporated with carbon fiber woven fabrics via two-step foaming method, forming sandwich-structured composite planks. The process is simple and efficient and facilitates any composition as required. The emphasis of this study is protection performances, involving puncture resistance, buffer absorption, and electromagnetic wave shielding effectiveness. The proposed soft PU foam composite planks consist of the top and bottom PU foam layers and an interlayer of carbon fiber woven fabric. Meanwhile, PU foam is incorporated with carbon staple fibers and an aluminized PET film for reinforcement requirements and electromagnetic wave shielding effectiveness, respectively. Based on the test results, the two-step foaming process can provide the PU foam composite planks with excellent buffer absorption, puncture resistance, and electromagnetic wave shielding effectiveness; therefore, the proposed composite planks contribute a novel structure composition to SMP, enabling it to be used as a protective composite. In addition, the composites contain conductive material and thus exhibit a greater diversity of functions.

Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1319 ◽  
Author(s):  
Ran Li ◽  
Huiping Lin ◽  
Piao Lan ◽  
Jie Gao ◽  
Yan Huang ◽  
...  

Lightweight electromagnetic interference shielding cellulose foam/carbon fiber composites were prepared by blending cellulose foam solution with carbon fibers and then freeze drying. Two kinds of carbon fiber (diameter of 7 μm) with different lengths were used, short carbon fibers (SCF, L/D = 100) and long carbon fibers (LCF, L/D = 300). It was observed that SCFs and LCFs built efficient network structures during the foaming process. Furthermore, the foaming process significantly increased the specific electromagnetic interference shielding effectiveness from 10 to 60 dB. In addition, cellulose/carbon fiber composite foams possessed good mechanical properties and low thermal conductivity of 0.021–0.046 W/(m·K).


2017 ◽  
Vol 88 (20) ◽  
pp. 2353-2361 ◽  
Author(s):  
Wei Fan ◽  
Dan-dan Li ◽  
Jia-lu Li ◽  
Juan-zi Li ◽  
Lin-jia Yuan ◽  
...  

To investigate the reinforcement architectures effect on the electromagnetic wave properties of carbon fiber reinforced polymer composites, three-dimensional (3D) interlock woven fabric/epoxy composites, 3D interlock woven fabric with stuffer warp/epoxy composites, and 3D orthogonal woven fabric/epoxy composites were studied by the free-space measurement system. The results showed that the three types of 3D woven carbon fiber fabric/epoxy composites had a slight difference in electromagnetic wave properties and the absorption was their dominant radar absorption mechanism. The electromagnetic wave absorption properties of the three types of composites were more than 90% (below −10 dB) over the 11.2–18 GHz bandwidth, and more than 60% (below −4 dB) over the 8–12 GHz bandwidth. Compared with unidirectional carbon fiber reinforced plastics, the three kinds of 3D woven carbon fiber fabric/epoxy composites exhibited better electromagnetic wave absorption properties over a broadband frequency range of 8–18 GHz. Therefore, the three kinds of 3D woven composite are expected to be used as radar absorption structures due to their excellent mechanical properties and outstanding absorption capacity. The total electromagnetic interference shielding effectiveness of the three types of 3D carbon fiber woven composites are all larger than 46 dB over the 8–12 GHz bandwidth, which is evidence that the three types of 3D carbon fiber woven composites can be used as excellent shielding materials for electromagnetic interference.


2003 ◽  
Vol 17 (08n09) ◽  
pp. 1235-1241 ◽  
Author(s):  
Ri Ichi Murakami ◽  
Hidetoshi Yamamoto ◽  
Chan Kong Kim ◽  
Cheol Mun Yim ◽  
Yun Hae Kim

The developments of electromagnetic wave shielding materials are strongly required because the malfunction of electronic equipment, mobile phone and wireless LAN avoids. In this study, it was investigated that the electromagnetic shielding effectiveness of carbon fiber sheets were enhanced by the ferrite which was coated by the microwave hydrothermal process. For coated carbon fiber sheet, the effects of ferrite and lamination of carbon fiber textile on the electromagnetic wave shielding effectiveness were discussed. In the range of frequency (100 – 1 GHz), the electromagnetic wave shielding effectiveness was measured by using TEM-Cell. The electromagnetic wave shielding effectiveness was greater for the coated carbon fiber sheets than for the uncoated carbon fiber sheets. When the insulation film was located between two carbon fiber sheets, the electromagnetic wave shielding effectiveness increased.


2011 ◽  
Vol 45 (26) ◽  
pp. 2707-2715 ◽  
Author(s):  
Lai Chiu-Chun ◽  
Jen Chyi-Wen ◽  
Chang Yuh-Shyang ◽  
Huang Kuo-Shien

We considered polyamide 6 as a base material for a composite and added improved tourmaline and carbon fiber to manufacture a material that could release negative ions and resist electromagnetic waves. Through Fourier transform infrared spectroscopy and thermogravimetric analyses, we verified that the improved tourmaline could disperse homogeneously in the base material, whose thermal properties improved as the content of tourmaline increased. Scanning electron microscopy demonstrated that the added tourmaline and carbon fiber complemented the conductive network of the composite material. A negative ion detector and an infrared thermal imaging system both revealed that with an appropriate tourmaline content, the negative ion release properties of the composite material could reach 2020 units cm−3 with a difference in temperature of up to 7.54°C. Analyses by a four-point probe low-resistance tester and electromagnetic wave shielding effectiveness tester demonstrated that the osmotic concentration was approximately 4%, and the surface resistivity was high, up to 1.04 × 107 Ω cm−1, reaching the range of static dissipative materials (106–1012 Ω cm−1). The maximum electromagnetic wave shielding effectiveness was as high as 30 dB MHz−1.


2013 ◽  
Vol 457-458 ◽  
pp. 40-43
Author(s):  
Jia Horng Lin ◽  
Yu Chun Chuang ◽  
Ching Wen Lou ◽  
Ting Ting Li ◽  
Chen Hung Huang

As improvement of industry and society, some potential crisis happened in working and living environment is taken into account by human people. Meanwhile, different kinds of protective appliances develop rapidly, and composite boards with cushion and puncture-resistance property are required consequently. This study aims to develop a cushion/puncture-resistance PU foam protective composites. This paper used Polyol and Isocyanate to prepare porous PU foam composite via foaming and curing process. By changing foam density and addition amount, cushion and puncture-resistance property were tested and then evaluated to seek for PU foam composite with cushion and puncture-resistance property. Result shows that, when density was 80 kg/m3, PU foaming composite board had the optimum resilience rate of 44 %, lowest impact remaining load of 638 N and best puncture-resistance force of 138.3 N.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2344 ◽  
Author(s):  
Hyun-Ji Kim ◽  
Sung-Hoon Kim ◽  
Sangmoon Park

Carbon fiber-carbon microcoil (CF-CMC) hybrids were formed on carbon fiber (CF)-based fabric. The morphologies of CF-based fabrics and CF-CMC hybridized fabrics were investigated. The electrical conductivities of the CF-CMC hybridized fabrics were examined and compared with those of native CF-based fabrics. Furthermore, the electromagnetic wave shielding effectiveness (SE) of the CF-CMC hybridized fabrics was investigated across operating frequencies in the 8.0–12.0 GHz range, and the results were compared with those for native CF-based fabrics. For the CF-based nonwoven fabrics, the SE values were improved by the CF-CMC hybridization reaction, although the electrical conductivities of the nonwoven fabric were reduced by the CF-CMC hybrid formation. For the CF-based woven fabrics, the SE values were improved by more than twofold throughout the entire range of frequencies, owing to the CF-CMC hybrid formation. This dramatic improvement was partly ascribed to the enhanced electrical conductivity, particularly in the transverse direction to the individual CFs. Owing to the increased thickness of the woven or nonwoven fabrics after the CF-CMC hybrid formation and the intrinsic characteristics of CMCs, the absorption mechanism for the SE was determined for the main factor that contributed to the improvement of the SE values.


RSC Advances ◽  
2019 ◽  
Vol 9 (17) ◽  
pp. 9401-9409 ◽  
Author(s):  
Yongjie Yan ◽  
Hong Xia ◽  
Yiping Qiu ◽  
Zhenzhen Xu ◽  
Qing-Qing Ni

Gradient vapor grown carbon fiber (VGCF) based shape memory polyurethane foam (VGCF@SMPUF) was fabricated by alternate dipping in a gradually diluted VGCF@SMPU/DMF solution and distilled water for shape memory driven microwave shielding.


Sign in / Sign up

Export Citation Format

Share Document