scholarly journals Kc and LAI Estimations Using Optical and SAR Remote Sensing Imagery for Vineyards Plots

2020 ◽  
Vol 12 (21) ◽  
pp. 3478
Author(s):  
Ofer Beeri ◽  
Yishai Netzer ◽  
Sarel Munitz ◽  
Danielle Ferman Mintz ◽  
Ran Pelta ◽  
...  

Daily or weekly irrigation monitoring conducted per sub-field or management zone is an important factor in vine irrigation decision-making. The objective is to determine the crop coefficient (Kc) and the leaf area index (LAI). Since the 1990s, optic satellite imagery has been utilized for this purpose, yet cloud-cover, as well as the desire to increase the temporal resolution, raise the need to integrate more imagery sources. The Sentinel-1 (a C-band synthetic aperture radar—SAR) can solve both issues, but its accuracy for LAI and Kc mapping needs to be determined. The goals of this study were as follows: (1) to test different methods for integrating SAR and optic sensors for increasing temporal resolution and creating seamless time-series of LAI and Kc estimations; and (2) to evaluate the ability of Sentinel-1 to estimate LAI and Kc in comparison to Sentinel-2 and Landsat-8. LAI values were collected at two vineyards, over three (north plot) and four (south plot) growing seasons. These values were converted to Kc, and both parameters were tested against optic and SAR indices. The results present the two Sentinel-1 indices that achieved the best accuracy in estimating the crop parameters and the best method for fusing the optic and the SAR data. Utilizing these achievements, the accuracy of the Kc and LAI estimations from Sentinel-1 were slightly better than the Sentinel-2′s and the Landsat-8′s accuracy. The integration of all three sensors into one seamless time-series not only increases the temporal resolution but also improves the overall accuracy.

2021 ◽  
Author(s):  
Eatidal Amin ◽  
Santiago Belda ◽  
Luca Pipia ◽  
Zoltan Szantoi ◽  
Ahmed El Baroudy ◽  
...  

<p>Monitoring of crop phenology significantly assists agricultural managing practices and plays an important role in crop yield predictions. Multi-temporal satellite-based observations allow analyzing vegetation seasonal dynamics over large areas by using vegetation indices or deriving biophysical variables. The Northern Nile Delta represents about half of all agricultural lands of Egypt. In this region, intensifying farming systems are predominant, which translates into a pressure on water supply demand. Moreover, double cropping rotations schemes are increasing, requiring a high temporal and spatial resolution monitoring for capturing successive crop growth cycles. This study presents a framework for crop phenological characterization based on high spatial and temporal resolution time series of green Leaf Area Index (LAI). Particularly, NASA's Harmonized Landsat 8 and Sentinel-2 (HLS) surface reflectance dataset was used. The HLS dataset provides seamless products from both satellites, enabling global land observations every 2-3 days at 30m. A green LAI retrieval model was originally trained using ground-based LAI measurements with Gaussian processes technique and validated for Sentinel-2 (R2: 0.7, RMSE= 0.67m2/m2) (Amin et al., 2020). Given the compatible spectral bands configuration of both sensors, a new model for Landsat 8 was adapted from the original one. Both models were implemented in an HLS image based automated retrieval chain obtaining therefore two different LAI time series, which were spatially averaged per crop parcel according to the ground data at disposal. The subsequent analysis was performed based on the time series phenological pre-processing and modelling implemented in the in-house developed scientific time series toolbox DATimeS (Belda et al., 2020). The proposed framework permitted to determine the crop patterns for four consecutive years (2016-2019), identifying one or two seasons per year, for single (e.g. grape, citrus) or double-cropping (e.g. maize-onion, maize-wheat, rice-clover), respectively. Alongside, each detected crop was characterized by retrieving a selected set of phenological parameters, which were contrasted with respect to the established crop type calendar (planting and harvesting dates) and for each crop type, the annual mean value was computed and the intra annual variability within the four years was assessed. </p><p> </p><p>Amin, E., Verrelst, J., Rivera-Caicedo, J. P., Pipia, L., Ruiz-Verdú, A., & Moreno, J. (2020). Prototyping Sentinel-2 green LAI and brown LAI products for cropland monitoring. Remote Sensing of Environment, 112168.</p><p>Belda, S., Pipia, L., Morcillo-Pallarés, P., Rivera-Caicedo, J. P., Amin, E., De Grave, C., & Verrelst, J. (2020). DATimeS: A machine learning time series GUI toolbox for gap-filling and vegetation phenology trends detection. Environmental Modelling & Software, 104666.</p>


2018 ◽  
Author(s):  
Paolo Villa ◽  
Monica Pinardi ◽  
Rossano Bolpagni ◽  
Jean-Marc Gillier ◽  
Peggy Zinke ◽  
...  

AbstractThanks to the improved spatial and temporal resolution of new generation Earth Observation missions, such as Landsat 8 and Sentinel-2, the potential of remote sensing techniques in mapping land surface phenology of terrestrial biomes can now be tested in inland water systems.We assessed the capabilities of dense time series of medium resolution satellite data to deliver quantitative information about macrophyte phenology metrics, focusing on three temperate European shallow lakes with connected wetlands, located in Italy, France and Romania.Leaf area index (LAI) maps for floating and emergent macrophyte growth forms were derived from semi-empirical regression modelling based on the best performing spectral index, with an error level around 0.11 m2 m-2. Phenology metrics were computed from LAI time series using TIMESAT code and used to analyse macrophyte seasonal dynamics in terms of spatial patterns and species-dependent variability. Peculiar patterns of autochthonous and allochthonous species seasonality across the three study areas were related to the environmental characteristics of each area in terms of ecological and hydrological conditions.In addition, the influence of satellite dataset characteristics – i.e. cloud cover thresholding, temporal resolution and missing acquisitions – on phenology timing metrics retrieval was assessed. Results have shown that with full resolution (5-day revisit) time series, cloud cover can bias phenology timing metrics by less than 2 days, and that reducing temporal resolution to 15 days (similar to Landsat revisit) still allows for mapping the start and peak of macrophyte growth with an error level around 2–3 days.


2020 ◽  
Vol 12 (11) ◽  
pp. 1876 ◽  
Author(s):  
Katsuto Shimizu ◽  
Tetsuji Ota ◽  
Nobuya Mizoue ◽  
Hideki Saito

Developing accurate methods for estimating forest structures is essential for efficient forest management. The high spatial and temporal resolution data acquired by CubeSat satellites have desirable characteristics for mapping large-scale forest structural attributes. However, most studies have used a median composite or single image for analyses. The multi-temporal use of CubeSat data may improve prediction accuracy. This study evaluates the capabilities of PlanetScope CubeSat data to estimate canopy height derived from airborne Light Detection and Ranging (LiDAR) by comparing estimates using Sentinel-2 and Landsat 8 data. Random forest (RF) models using a single composite, multi-seasonal composites, and time-series data were investigated at different spatial resolutions of 3, 10, 20, and 30 m. The highest prediction accuracy was obtained by the PlanetScope multi-seasonal composites at 3 m (relative root mean squared error: 51.3%) and Sentinel-2 multi-seasonal composites at the other spatial resolutions (40.5%, 35.2%, and 34.2% for 10, 20, and 30 m, respectively). The results show that RF models using multi-seasonal composites are 1.4% more accurate than those using harmonic metrics from time-series data in the median. PlanetScope is recommended for canopy height mapping at finer spatial resolutions. However, the unique characteristics of PlanetScope data in a spatial and temporal context should be further investigated for operational forest monitoring.


2021 ◽  
Vol 13 (21) ◽  
pp. 4465
Author(s):  
Yu Shen ◽  
Xiaoyang Zhang ◽  
Weile Wang ◽  
Ramakrishna Nemani ◽  
Yongchang Ye ◽  
...  

Accurate and timely land surface phenology (LSP) provides essential information for investigating the responses of terrestrial ecosystems to climate changes and quantifying carbon and surface energy cycles on the Earth. LSP has been widely investigated using daily Visible Infrared Imaging Radiometer Suite (VIIRS) or Moderate Resolution Imaging Spectroradiometer (MODIS) observations, but the resultant phenometrics are frequently influenced by surface heterogeneity and persistent cloud contamination in the time series observations. Recently, LSP has been derived from Landsat-8 and Sentinel-2 time series providing detailed spatial pattern, but the results are of high uncertainties because of poor temporal resolution. With the availability of data from Advanced Baseline Imager (ABI) onboard a new generation of geostationary satellites that observe the earth every 10–15 min, daily cloud-free time series could be obtained with high opportunities. Therefore, this study investigates the generation of synthetic high spatiotemporal resolution time series by fusing the harmonized Landsat-8 and Sentinel-2 (HLS) time series with the temporal shape of ABI data for monitoring field-scale (30 m) LSP. The algorithm is verified by detecting the timings of greenup and senescence onsets around north Wisconsin/Michigan states, United States, where cloud cover is frequent during spring rainy season. The LSP detections from HLS-ABI are compared with those from HLS or ABI alone and are further evaluated using PhenoCam observations. The result indicates that (1) ABI could provide ~3 times more high-quality observations than HLS around spring greenup onset; (2) the greenup and senescence onsets derived from ABI and HLS-ABI are spatially consistent and statistically comparable with a median difference less than 1 and 10-days, respectively; (3) greenup and senescence onsets derived from HLS data show sharp boundaries around the orbit-overlapped areas and shifts of ~13 days delay and ~15 days ahead, respectively, relative to HLS-ABI detections; and (4) HLS-ABI greenup and senescence onsets align closely to PhenoCam observations with an absolute average difference of less than 2 days and 5 days, respectively, which are much better than phenology detections from ABI or HLS alone. The result suggests that the proposed approach could be implemented the monitor of 30 m LSP over regions with persistent cloud cover.


2021 ◽  
Vol 3 (1) ◽  
pp. 5
Author(s):  
Federico Filipponi

Earth observation provides timely and spatially explicit information about crop phenology and vegetation dynamics that can support decision making and sustainable agricultural land management. Vegetation spectral indices calculated from optical multispectral satellite sensors have been largely used to monitor vegetation status. In addition, techniques to retrieve biophysical parameters from satellite acquisitions, such as the Leaf Area Index (LAI), have allowed to assimilate Earth observation time series in numerical modeling for the analysis of several land surface processes related to agroecosystem dynamics. More recently, biophysical processors used to estimate biophysical parameters from satellite acquisitions have been calibrated for retrieval from sensors with different high spatial resolution and spectral characteristics. Virtual constellations of satellite sensors allow the generation of denser LAI time series, contributing to improve vegetation phenology estimation accuracy and, consequently, enhancing agroecosystems monitoring capacity. This research study compares LAI estimates over croplands using different biophysical processors from Sentinel-2 MSI and Landsat-8 OLI satellite sensors. The results are used to demonstrate the capacity of virtual satellite constellation to strengthen LAI time series to derive important cropland use information over large areas.


2020 ◽  
Vol 12 (20) ◽  
pp. 3376 ◽  
Author(s):  
Giovanni Romano ◽  
Giovanni Francesco Ricci ◽  
Francesco Gentile

In recent decades, technological advancements in sensors have generated increasing interest in remote sensing data for the study of vegetation features. Image pixel resolution can affect data analysis and results. This study evaluated the potential of three satellite images of differing resolution (Landsat 8, 30 m; Sentinel-2, 10 m; and Pleiades 1A, 2 m) in assessing the Leaf Area Index (LAI) of riparian vegetation in two Mediterranean streams, and in both a winter wheat field and a deciduous forest used to compare the accuracy of the results. In this study, three different retrieval methods—the Caraux-Garson, the Lambert-Beer, and the Campbell and Norman equations—are used to estimate LAI from the Normalized Difference Vegetation Index (NDVI). To validate sensor data, LAI values were measured in the field using the LAI 2200 Plant Canopy Analyzer. The statistical indices showed a better performance for Pleiades 1A and Landsat 8 images, the former particularly in sites characterized by high canopy closure, such as deciduous forests, or in areas with stable riparian vegetation, the latter where stable reaches of riparian vegetation cover are almost absent or very homogenous, as in winter wheat fields. Sentinel-2 images provided more accurate results in terms of the range of LAI values. Considering the different types of satellite imagery, the Lambert-Beer equation generally performed best in estimating LAI from the NDVI, especially in areas that are geomorphologically stable or have a denser vegetation cover, such as deciduous forests.


2020 ◽  
Vol 177 ◽  
pp. 105692
Author(s):  
Xijia Zhou ◽  
Pengxin Wang ◽  
Kevin Tansey ◽  
Shuyu Zhang ◽  
Hongmei Li ◽  
...  

2019 ◽  
Vol 11 (11) ◽  
pp. 1266 ◽  
Author(s):  
Mingzheng Zhang ◽  
Dehai Zhu ◽  
Wei Su ◽  
Jianxi Huang ◽  
Xiaodong Zhang ◽  
...  

Continuous monitoring of crop growth status using time-series remote sensing image is essential for crop management and yield prediction. The growing season of summer corn in the North China Plain with the period of rain and hot, which makes the acquisition of cloud-free satellite imagery very difficult. Therefore, we focused on developing image datasets with both a high temporal resolution and medium spatial resolution by harmonizing the time-series of MOD09GA Normalized Difference Vegetation Index (NDVI) images and 30-m-resolution GF-1 WFV images using the improved Kalman filter model. The harmonized images, GF-1 images, and Landsat 8 images were then combined and used to monitor the summer corn growth from 5th June to 6th October, 2014, in three counties of Hebei Province, China, in conjunction with meteorological data and MODIS Evapotranspiration Data Set. The prediction residuals ( Δ P R K ) in NDVI between the GF-1 observations and the harmonized images was in the range of −0.2 to 0.2 with Gauss distribution. Moreover, the obtained phenological curves manifested distinctive growth features for summer corn at field scales. Changes in NDVI over time were more effectively evaluated and represented corn growth trends, when considered in conjunction with meteorological data and MODIS Evapotranspiration Data Set. We observed that the NDVI of summer corn showed a process of first decreasing and then rising in the early growing stage and discuss how the temperature and moisture of the environment changed with the growth stage. The study demonstrated that the synthesized dataset constructed using this methodology was highly accurate, with high temporal resolution and medium spatial resolution and it was possible to harmonize multi-source remote sensing imagery by the improved Kalman filter for long-term field monitoring.


Sign in / Sign up

Export Citation Format

Share Document