scholarly journals Evaluation of 2-m Air Temperature and Surface Temperature from ERA5 and ERA-I Using Buoy Observations in the Arctic during 2010–2020

2021 ◽  
Vol 13 (14) ◽  
pp. 2813
Author(s):  
Yining Yu ◽  
Wanxin Xiao ◽  
Zhilun Zhang ◽  
Xiao Cheng ◽  
Fengming Hui ◽  
...  

In data-sparse regions such as the Arctic, atmospheric reanalysis is one of the key tools for understanding rapid climate change at the regional and global scales. The utility of reanalysis datasets based on data assimilation is affected by their accuracy and biases. Therefore, it is important to evaluate their performance. Here, we conduct inter-comparisons of two temperature variables, namely, the 2-m air temperature (Ta) and the surface temperature (Ts), from the widely used ERA-I and ERA5 reanalysis datasets provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) against in situ observations from three international buoy programs (i.e., the International Arctic Buoy Programme (IABP), the Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), and the Cold Regions Research and Engineering Laboratory (CRREL)) during 2010–2020 in the Arctic. Overall, the results show that both the ERA-I and ERA5 were well correlated with the buoy observations, with the highest correlation coefficient reaching 0.98. There were generally warm Ta biases for both ERA-I (2.27 ± 3.33 °C) and ERA5 (2.34 ± 3.22 °C) when compared with more than 3000 matching pairs of daily buoy observations. The warm Ta biases of both reanalysis datasets exhibited seasonal variations, reaching the maximum of 3.73 ± 2.84 °C in April and the minimum of 1.36 ± 2.51 °C in September. For Ts, both ERA-I and ERA5 exhibited good consistencies with the buoy observations, but have higher amplitude biases compared with those for Ta, with generally negative biases of −4.79 ± 4.86 °C for ERA-I and −4.11 ± 3.92 °C for ERA5. For both reanalysis datasets, the largest bias of Ts (−11.18 ± 3.08 °C) occurred in December, while the biases were rather small (less than −3 °C) in the warmer months (April to October). The cold Ts biases for ERA-I and ERA5 were probably overestimated due to the location of the surface temperature sensors on the buoys, which may have been affected by snow cover. Both the Ta and Ts biases varied for different buoy programs and different sea ice concentration conditions, yet they exhibited similar trends.

2021 ◽  
Author(s):  
Pia Nielsen-Englyst ◽  
Jacob L. Høyer ◽  
Kristine S. Madsen ◽  
Rasmus T. Tonboe ◽  
Gorm Dybkjær ◽  
...  

Abstract. The Arctic region is responding heavily to climate change, and yet, the air temperature of ice covered areas in the Arctic is heavily under-sampled when it comes to in situ measurements, resulting in large uncertainties in existing weather- and reanalysis products. This paper presents a method for estimating daily mean clear sky 2 meter air temperatures (T2m) in the Arctic from satellite observations of skin temperature, using the Arctic and Antarctic ice Surface Temperatures from thermal Infrared (AASTI) satellite dataset, providing spatially detailed observations of the Arctic. The method is based on a linear regression model, which has been tuned against in situ observations to estimate daily mean T2m based on clear sky satellite ice surface skin temperatures. The daily satellite derived T2m product includes estimated uncertainties and covers clear sky snow and ice surfaces in the Arctic region during the period 2000–2009, provided on a 0.25 degree regular latitude-longitude grid. Comparisons with independent in situ measured T2m show average biases of 0.30 °C and 0.35 °C and average root mean square errors of 3.47 °C and 3.20 °C for land ice and sea ice, respectively. The associated uncertainties are verified to be very realistic for both land ice and sea ice, using in situ observations. The reconstruction provides a much better spatial coverage than the sparse in situ observations of T2m in the Arctic, is independent of numerical weather prediction model input and it therefore provides an important supplement to simulated air temperatures to be used for assimilation or global surface temperature reconstructions. A comparison between in situ T2m versus T2m derived from satellite and ERA-Interim/ERA5 estimates shows that the T2m derived from satellite observations validate similar or better than ERA-Interim/ERA5 in the Arctic.


2017 ◽  
Author(s):  
Alden C. Adolph ◽  
Mary R. Albert ◽  
Dorothy K. Hall

Abstract. As rapid warming of the Arctic occurs, it is imperative that climate indicators such as temperature be monitored over large areas to understand and predict the effects of climate changes. Temperatures are traditionally tracked using in situ 2 m air temperatures, but in remote locations where few ground-based measurements exist, such as on the Greenland Ice Sheet, temperatures over large areas are assessed using remote sensing techniques. Because of the presence of surface-based temperature inversions in ice-covered areas, differences between 2 m air temperature and the temperature of the actual snow surface (referred to as skin temperature) can be significant and are particularly relevant when considering validation and application of remote sensing temperature data. We present results from a field campaign extending from 8 June through 18 July 2015, near Summit Station in Greenland to study surface temperature using the following measurements: skin temperature measured by an infrared (IR) sensor, thermochrons, and thermocouples; 2 m air temperature measured by a NOAA meteorological station; and a MODerate-resolution Imaging Spectroradiometer (MODIS) surface temperature product. Our data indicate that 2 m air temperature is often significantly higher than snow skin temperature measured in-situ, and this finding may account for apparent biases in previous surface temperature studies of MODIS products that used 2 m air temperature for validation. This inversion is present during summer months when incoming solar radiation and wind speed are both low. As compared to our in-situ IR skin temperature measurements, after additional cloud masking, the MOD/MYD11 Collection 6 surface-temperature standard product has an RMSE of 1.0 °C, spanning a range of temperatures from −35 °C to −5 °C. For our study area and time series, MODIS surface temperature products agree with skin surface temperatures better than previous studies indicated, especially at temperatures below −20 °C where other studies found a significant cold bias. The apparent cold bias present in others’ comparison of 2 m air temperature and MODIS surface temperature is perhaps a result of the near-surface temperature inversion that our data demonstrate. Further investigation of how in-situ IR skin temperatures compare to MODIS surface temperature at lower temperatures (below −35 °C) is warranted to determine if this cold bias does indeed exist.


2019 ◽  
Author(s):  
Pia Nielsen-Englyst ◽  
Jacob L. Høyer ◽  
Kristine S. Madsen ◽  
Rasmus T. Tonboe ◽  
Gorm Dybkjær

Abstract. The Arctic region is responding heavily to climate change, and yet, the air temperature of Arctic, ice covered areas is heavily under-sampled when it comes to in situ measurements, and large uncertainties exist in weather- and reanalysis products. This paper presents a method for estimating daily mean 2 meter air temperatures (T2m) in the Arctic from satellite observations of skin temperature, using the Arctic and Antarctic ice Surface Temperatures from thermal Infrared (AASTI) satellite dataset, providing spatially detailed observations of the Arctic. The method is based on a linear regression model which has been developed using in situ observations and daily mean satellite ice surface skin temperatures combined with a seasonal variation to estimate daily T2m. The satellite derived T2m product including estimated uncertainties covers clear sky snow and ice surfaces in the Arctic region during the period 2000–2009. Comparison with independent in situ measured T2m gives average correlations of 95.5 % and 96.5 % and average root mean square errors of 3.47 °C and 3.19 °C for land ice and sea ice, respectively. The reconstruction provides a much better spatial coverage than the sparse in situ observations of T2m in the Arctic, is independent of numerical weather prediction model input and it therefore provides an important alternative to simulated air temperatures to be used for assimilation or global surface temperature reconstructions. A comparison between in situ T2m versus T2m from satellite and ERA-Interim shows that the T2m derived from satellite observations validate similar or better than ERA-Interim estimates in the Arctic.


2021 ◽  
Author(s):  
Katharina Hartmuth ◽  
Lukas Papritz ◽  
Maxi Boettcher ◽  
Heini Wernli

<p>Single extreme weather events such as intense storms or blocks can have a major impact on polar surface temperatures, the formation and melting rates of sea-ice, and, thus, on minimum and maximum sea-ice extent within a particular year. Anomalous weather conditions on the time scale of an entire season, for example resulting from an unusual sequence of storms, can affect the polar energy budget and sea-ice coverage even more. Here, we introduce the concept of an extreme season in a distinct region using an EOF analysis in the phase space spanned by anomalies of a set of surface parameters (surface temperature, precipitation, surface solar and thermal radiation and surface heat fluxes). To focus on dynamical instead of climate change aspects, we define anomalies as departures of the seasonal mean from a transient climatology. The goal of this work is to study the dynamical processes leading to such anomalous seasons in the polar regions, which have not yet been analysed. Specifically, we focus here on a detailed analysis of Arctic extreme seasons and their underlying atmospheric dynamics in the ERA5 reanalysis data set.</p><p>We find that in regions covered predominantly by sea ice, extreme seasons are mostly determined by anomalies of atmospheric dynamical features such as cyclones and blocking. In contrast, in regions including large areas of open water the formation of extreme seasons can also be partially due to preconditioning during previous seasons, leading to strong anomalies in the sea ice concentration and/or sea surface temperatures at the beginning of the extreme season.</p><p>Two particular extreme season case studies in the Kara-Barents Seas are discussed in more detail. In this region, the winter of 2011/12 shows the largest positive departure of surface temperature from the background warming trend together with a negative anomaly in the sea ice concentration. An analysis of the synoptic situation shows that the strongly reduced frequency of cold air outbreaks compared to climatology combined with several blocking events and the frequent occurrence of cyclones transporting warm air into the region favored the continuous anomalies of both parameters. In contrast, the winter of 2016/17, which shows a positive precipitation anomaly and negative anomaly in the surface energy balance, was favored by a strong surface preconditioning. An extremely warm summer and autumn in 2016 caused strongly reduced sea ice concentrations and increased sea surface temperatures in the Kara-Barents Seas at the beginning of the winter, favoring increased air-sea fluxes and precipitation during the following months.</p><p>Our results reveal a high degree of variability of the processes involved in the formation of extreme seasons in the Arctic. Quantifying and understanding these processes will also be important when considering climate change effects in polar regions and the ability of climate models in reproducing extreme seasons in the Arctic and Antarctica.</p>


2021 ◽  
pp. 1-43
Author(s):  
Haibo Bi ◽  
Yunhe Wang ◽  
Yu Liang ◽  
Weifu Sun ◽  
Xi Liang ◽  
...  

AbstractAtmospheric circulation associated with the Arctic Dipole (AD) pattern plays a crucial role in modulating the variations of summertime sea ice concentration (SIC) within the Pacific Arctic sector (PAS). Based on reanalysis data and satellite observations, we found that the impacts of atmospheric circulation associated with AD+ on SIC change over different regions of the PAS (including East Siberian Sea (ESS), Beaufort and Chukchi Seas (BCS), and Canadian Arctic Archipelago (CAA)), are dependent on the phase shifts of Pacific Decadal Oscillation (PDO). Satellite observations reveal that SIC anomalies, influenced by AD+ during PDO- relative to that during PDO+, varies significantly in summer by 4.9%, -7.3%, and -6.4% over ESS, BCS, and CAA, respectively. Overall, the atmospheric anomalies over CAA and BCS in terms of specific humidity, air temperature, and thereby downward longwave radiation (DLR), are enhanced (weakened) in the atmospheric conditions associated with AD+ during PDO- (PDO+). In these two regions, the larger (smaller) increases in specific humidity and air temperature, associated with AD+ during PDO- (PDO+), are connected to the increased (decreased) poleward moisture flux, strengthened (weakened) convergence of moisture and heat flux, and partly to adiabatic heating. As a consequence, the DLR and surface net energy flux anomalies over the two regions are reinforced in the atmospheric scenarios associated with AD+ during PDO- compared with that during PDO+. Therefore, smaller SIC anomalies are identified over CAA and BCS in the cases related to AD+ during PDO- than during PDO+. Essentially, the changes of the DLR anomaly in CAA and BCS are in alignment with geopotential height anomalies, which are modulated by the anticyclonic circulation pattern in association with AD+ during varying PDO phases. In contrast, the SIC changes over ESS is primarily attributed to the variations in mechnical wind focring and sea surface temperature (SST) anomalies. The cloud fraction anomalies associated with AD+ during different PDO phases are found not to be a significant contributor to the variations of sea ice anomaly in the studied regions. Given the oscillatory nature of PDO, we speculate that the recent shift to the PDO+ phase may temporarily slow the observed significant decline trend of the summertime SIC within PAS of the Arctic.


2021 ◽  
Vol 13 (6) ◽  
pp. 1139
Author(s):  
David Llaveria ◽  
Juan Francesc Munoz-Martin ◽  
Christoph Herbert ◽  
Miriam Pablos ◽  
Hyuk Park ◽  
...  

CubeSat-based Earth Observation missions have emerged in recent times, achieving scientifically valuable data at a moderate cost. FSSCat is a two 6U CubeSats mission, winner of the ESA S3 challenge and overall winner of the 2017 Copernicus Masters Competition, that was launched in September 2020. The first satellite, 3Cat-5/A, carries the FMPL-2 instrument, an L-band microwave radiometer and a GNSS-Reflectometer. This work presents a neural network approach for retrieving sea ice concentration and sea ice extent maps on the Arctic and the Antarctic oceans using FMPL-2 data. The results from the first months of operations are presented and analyzed, and the quality of the retrieved maps is assessed by comparing them with other existing sea ice concentration maps. As compared to OSI SAF products, the overall accuracy for the sea ice extent maps is greater than 97% using MWR data, and up to 99% when using combined GNSS-R and MWR data. In the case of Sea ice concentration, the absolute errors are lower than 5%, with MWR and lower than 3% combining it with the GNSS-R. The total extent area computed using this methodology is close, with 2.5% difference, to those computed by other well consolidated algorithms, such as OSI SAF or NSIDC. The approach presented for estimating sea ice extent and concentration maps is a cost-effective alternative, and using a constellation of CubeSats, it can be further improved.


2021 ◽  
Vol 13 (12) ◽  
pp. 2283
Author(s):  
Hyangsun Han ◽  
Sungjae Lee ◽  
Hyun-Cheol Kim ◽  
Miae Kim

The Arctic sea ice concentration (SIC) in summer is a key indicator of global climate change and important information for the development of a more economically valuable Northern Sea Route. Passive microwave (PM) sensors have provided information on the SIC since the 1970s by observing the brightness temperature (TB) of sea ice and open water. However, the SIC in the Arctic estimated by operational algorithms for PM observations is very inaccurate in summer because the TB values of sea ice and open water become similar due to atmospheric effects. In this study, we developed a summer SIC retrieval model for the Pacific Arctic Ocean using Advanced Microwave Scanning Radiometer 2 (AMSR2) observations and European Reanalysis Agency-5 (ERA-5) reanalysis fields based on Random Forest (RF) regression. SIC values computed from the ice/water maps generated from the Korean Multi-purpose Satellite-5 synthetic aperture radar images from July to September in 2015–2017 were used as a reference dataset. A total of 24 features including the TB values of AMSR2 channels, the ratios of TB values (the polarization ratio and the spectral gradient ratio (GR)), total columnar water vapor (TCWV), wind speed, air temperature at 2 m and 925 hPa, and the 30-day average of the air temperatures from the ERA-5 were used as the input variables for the RF model. The RF model showed greatly superior performance in retrieving summer SIC values in the Pacific Arctic Ocean to the Bootstrap (BT) and Arctic Radiation and Turbulence Interaction STudy (ARTIST) Sea Ice (ASI) algorithms under various atmospheric conditions. The root mean square error (RMSE) of the RF SIC values was 7.89% compared to the reference SIC values. The BT and ASI SIC values had three times greater values of RMSE (20.19% and 21.39%, respectively) than the RF SIC values. The air temperatures at 2 m and 925 hPa and their 30-day averages, which indicate the ice surface melting conditions, as well as the GR using the vertically polarized channels at 23 GHz and 18 GHz (GR(23V18V)), TCWV, and GR(36V18V), which accounts for atmospheric water content, were identified as the variables that contributed greatly to the RF model. These important variables allowed the RF model to retrieve unbiased and accurate SIC values by taking into account the changes in TB values of sea ice and open water caused by atmospheric effects.


Sign in / Sign up

Export Citation Format

Share Document