scholarly journals Paris-CARLA-3D: A Real and Synthetic Outdoor Point Cloud Dataset for Challenging Tasks in 3D Mapping

2021 ◽  
Vol 13 (22) ◽  
pp. 4713
Author(s):  
Jean-Emmanuel Deschaud ◽  
David Duque ◽  
Jean Pierre Richa ◽  
Santiago Velasco-Forero ◽  
Beatriz Marcotegui ◽  
...  

Paris-CARLA-3D is a dataset of several dense colored point clouds of outdoor environments built by a mobile LiDAR and camera system. The data are composed of two sets with synthetic data from the open source CARLA simulator (700 million points) and real data acquired in the city of Paris (60 million points), hence the name Paris-CARLA-3D. One of the advantages of this dataset is to have simulated the same LiDAR and camera platform in the open source CARLA simulator as the one used to produce the real data. In addition, manual annotation of the classes using the semantic tags of CARLA was performed on the real data, allowing the testing of transfer methods from the synthetic to the real data. The objective of this dataset is to provide a challenging dataset to evaluate and improve methods on difficult vision tasks for the 3D mapping of outdoor environments: semantic segmentation, instance segmentation, and scene completion. For each task, we describe the evaluation protocol as well as the experiments carried out to establish a baseline.

2020 ◽  
Vol 12 (8) ◽  
pp. 1240 ◽  
Author(s):  
Xabier Blanch ◽  
Antonio Abellan ◽  
Marta Guinau

The emerging use of photogrammetric point clouds in three-dimensional (3D) monitoring processes has revealed some constraints with respect to the use of LiDAR point clouds. Oftentimes, point clouds (PC) obtained by time-lapse photogrammetry have lower density and precision, especially when Ground Control Points (GCPs) are not available or the camera system cannot be properly calibrated. This paper presents a new workflow called Point Cloud Stacking (PCStacking) that overcomes these restrictions by making the most of the iterative solutions in both camera position estimation and internal calibration parameters that are obtained during bundle adjustment. The basic principle of the stacking algorithm is straightforward: it computes the median of the Z coordinates of each point for multiple photogrammetric models to give a resulting PC with a greater precision than any of the individual PC. The different models are reconstructed from images taken simultaneously from, at least, five points of view, reducing the systematic errors associated with the photogrammetric reconstruction workflow. The algorithm was tested using both a synthetic point cloud and a real 3D dataset from a rock cliff. The synthetic data were created using mathematical functions that attempt to emulate the photogrammetric models. Real data were obtained by very low-cost photogrammetric systems specially developed for this experiment. Resulting point clouds were improved when applying the algorithm in synthetic and real experiments, e.g., 25th and 75th error percentiles were reduced from 3.2 cm to 1.4 cm in synthetic tests and from 1.5 cm to 0.5 cm in real conditions.


2021 ◽  
Vol 40 (3) ◽  
pp. 1-12
Author(s):  
Hao Zhang ◽  
Yuxiao Zhou ◽  
Yifei Tian ◽  
Jun-Hai Yong ◽  
Feng Xu

Reconstructing hand-object interactions is a challenging task due to strong occlusions and complex motions. This article proposes a real-time system that uses a single depth stream to simultaneously reconstruct hand poses, object shape, and rigid/non-rigid motions. To achieve this, we first train a joint learning network to segment the hand and object in a depth image, and to predict the 3D keypoints of the hand. With most layers shared by the two tasks, computation cost is saved for the real-time performance. A hybrid dataset is constructed here to train the network with real data (to learn real-world distributions) and synthetic data (to cover variations of objects, motions, and viewpoints). Next, the depth of the two targets and the keypoints are used in a uniform optimization to reconstruct the interacting motions. Benefitting from a novel tangential contact constraint, the system not only solves the remaining ambiguities but also keeps the real-time performance. Experiments show that our system handles different hand and object shapes, various interactive motions, and moving cameras.


Author(s):  
T. O. Chan ◽  
D. D. Lichti

Lamp poles are one of the most abundant highway and community components in modern cities. Their supporting parts are primarily tapered octagonal cones specifically designed for wind resistance. The geometry and the positions of the lamp poles are important information for various applications. For example, they are important to monitoring deformation of aged lamp poles, maintaining an efficient highway GIS system, and also facilitating possible feature-based calibration of mobile LiDAR systems. In this paper, we present a novel geometric model for octagonal lamp poles. The model consists of seven parameters in which a rotation about the z-axis is included, and points are constrained by the trigonometric property of 2D octagons after applying the rotations. For the geometric fitting of the lamp pole point cloud captured by a terrestrial LiDAR, accurate initial parameter values are essential. They can be estimated by first fitting the points to a circular cone model and this is followed by some basic point cloud processing techniques. The model was verified by fitting both simulated and real data. The real data includes several lamp pole point clouds captured by: (1) Faro Focus 3D and (2) Velodyne HDL-32E. The fitting results using the proposed model are promising, and up to 2.9 mm improvement in fitting accuracy was realized for the real lamp pole point clouds compared to using the conventional circular cone model. The overall result suggests that the proposed model is appropriate and rigorous.


Geophysics ◽  
1990 ◽  
Vol 55 (9) ◽  
pp. 1166-1182 ◽  
Author(s):  
Irshad R. Mufti

Finite‐difference seismic models are commonly set up in 2-D space. Such models must be excited by a line source which leads to different amplitudes than those in the real data commonly generated from a point source. Moreover, there is no provision for any out‐of‐plane events. These problems can be eliminated by using 3-D finite‐difference models. The fundamental strategy in designing efficient 3-D models is to minimize computational work without sacrificing accuracy. This was accomplished by using a (4,2) differencing operator which ensures the accuracy of much larger operators but requires many fewer numerical operations as well as significantly reduced manipulation of data in the computer memory. Such a choice also simplifies the problem of evaluating the wave field near the subsurface boundaries of the model where large operators cannot be used. We also exploited the fact that, unlike the real data, the synthetic data are free from ambient noise; consequently, one can retain sufficient resolution in the results by optimizing the frequency content of the source signal. Further computational efficiency was achieved by using the concept of the exploding reflector which yields zero‐offset seismic sections without the need to evaluate the wave field for individual shot locations. These considerations opened up the possibility of carrying out a complete synthetic 3-D survey on a supercomputer to investigate the seismic response of a large‐scale structure located in Oklahoma. The analysis of results done on a geophysical workstation provides new insight regarding the role of interference and diffraction in the interpretation of seismic data.


Geophysics ◽  
2013 ◽  
Vol 78 (6) ◽  
pp. J87-J98 ◽  
Author(s):  
Felipe F. Melo ◽  
Valeria C. F. Barbosa ◽  
Leonardo Uieda ◽  
Vanderlei C. Oliveira Jr. ◽  
João B. C. Silva

We have developed a new method that drastically reduces the number of the source location estimates in Euler deconvolution to only one per anomaly. Our method employs the analytical estimators of the base level and of the horizontal and vertical source positions in Euler deconvolution as a function of the [Formula: see text]- and [Formula: see text]-coordinates of the observations. By assuming any tentative structural index (defining the geometry of the sources), our method automatically locates plateaus, on the maps of the horizontal coordinate estimates, indicating consistent estimates that are very close to the true corresponding coordinates. These plateaus are located in the neighborhood of the highest values of the anomaly and show a contrasting behavior with those estimates that form inclined planes at the anomaly borders. The plateaus are automatically located on the maps of the horizontal coordinate estimates by fitting a first-degree polynomial to these estimates in a moving-window scheme spanning all estimates. The positions where the angular coefficient estimates are closest to zero identify the plateaus of the horizontal coordinate estimates. The sample means of these horizontal coordinate estimates are the best horizontal location estimates. After mapping each plateau, our method takes as the best structural index the one that yields the minimum correlation between the total-field anomaly and the estimated base level over each plateau. By using the estimated structural index for each plateau, our approach extracts the vertical coordinate estimates over the corresponding plateau. The sample means of these estimates are the best depth location estimates in our method. When applied to synthetic data, our method yielded good results if the bodies produce weak- and mid-interfering anomalies. A test on real data over intrusions in the Goiás Alkaline Province, Brazil, retrieved sphere-like sources suggesting 3D bodies.


Geophysics ◽  
2014 ◽  
Vol 79 (1) ◽  
pp. M1-M10 ◽  
Author(s):  
Leonardo Azevedo ◽  
Ruben Nunes ◽  
Pedro Correia ◽  
Amílcar Soares ◽  
Luis Guerreiro ◽  
...  

Due to the nature of seismic inversion problems, there are multiple possible solutions that can equally fit the observed seismic data while diverging from the real subsurface model. Consequently, it is important to assess how inverse-impedance models are converging toward the real subsurface model. For this purpose, we evaluated a new methodology to combine the multidimensional scaling (MDS) technique with an iterative geostatistical elastic seismic inversion algorithm. The geostatistical inversion algorithm inverted partial angle stacks directly for acoustic and elastic impedance (AI and EI) models. It was based on a genetic algorithm in which the model perturbation at each iteration was performed recurring to stochastic sequential simulation. To assess the reliability and convergence of the inverted models at each step, the simulated models can be projected in a metric space computed by MDS. This projection allowed distinguishing similar from variable models and assessing the convergence of inverted models toward the real impedance ones. The geostatistical inversion results of a synthetic data set, in which the real AI and EI models are known, were plotted in this metric space along with the known impedance models. We applied the same principle to a real data set using a cross-validation technique. These examples revealed that the MDS is a valuable tool to evaluate the convergence of the inverse methodology and the impedance model variability among each iteration of the inversion process. Particularly for the geostatistical inversion algorithm we evaluated, it retrieves reliable impedance models while still producing a set of simulated models with considerable variability.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260308
Author(s):  
Mauro Castelli ◽  
Luca Manzoni ◽  
Tatiane Espindola ◽  
Aleš Popovič ◽  
Andrea De Lorenzo

Wireless networks are among the fundamental technologies used to connect people. Considering the constant advancements in the field, telecommunication operators must guarantee a high-quality service to keep their customer portfolio. To ensure this high-quality service, it is common to establish partnerships with specialized technology companies that deliver software services in order to monitor the networks and identify faults and respective solutions. A common barrier faced by these specialized companies is the lack of data to develop and test their products. This paper investigates the use of generative adversarial networks (GANs), which are state-of-the-art generative models, for generating synthetic telecommunication data related to Wi-Fi signal quality. We developed, trained, and compared two of the most used GAN architectures: the Vanilla GAN and the Wasserstein GAN (WGAN). Both models presented satisfactory results and were able to generate synthetic data similar to the real ones. In particular, the distribution of the synthetic data overlaps the distribution of the real data for all of the considered features. Moreover, the considered generative models can reproduce the same associations observed for the synthetic features. We chose the WGAN as the final model, but both models are suitable for addressing the problem at hand.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. G211-G223 ◽  
Author(s):  
Lasse Amundsen ◽  
Lars Løseth ◽  
Rune Mittet ◽  
Svein Ellingsrud ◽  
Bjørn Ursin

This paper gives a unified treatment of electromagnetic (EM) field decomposition into upgoing and downgoing components for conductive and nonconductive media, where the electromagnetic data are measured on a plane in which the electric permittivity, magnetic permeability, and electrical conductivity are known constants with respect to space and time. Above and below the plane of measurement, the medium can be arbitrarily inhomogeneous and anisotropic. In particular, the proposed decomposition theory applies to marine EM, low-frequency data acquired for hydrocarbon mapping where the upgoing components of the recorded field guided and refracted from the reservoir, that are of interest for the interpretation. The direct-source field, the refracted airwave induced by the source, the reflected field from the sea surface, and mostmagnetotelluric noise traveling downward just below the seabed are field components that are considered to be noise in electromagnetic measurements. The viability and validity of the decomposition method is demonstrated using modeled and real marine EM data, also termed seabed logging (SBL) data. The synthetic data are simulated in a model that is fairly representative of the geologic area where the real SBL were collected. The results from the synthetic data study therefore are used to assist in the interpretation of the real data from an area with [Formula: see text] water depth above a known gas province offshore Norway. The effect of the airwave is seen clearly in measured data. After field decomposition just below the seabed, the upgoing component of the recorded electric field has almost linear phase, indicating that most of the effect of the airwave component has been removed.


2020 ◽  
Vol 12 (5) ◽  
pp. 771 ◽  
Author(s):  
Miguel Angel Ortíz-Barrios ◽  
Ian Cleland ◽  
Chris Nugent ◽  
Pablo Pancardo ◽  
Eric Järpe ◽  
...  

Automatic detection and recognition of Activities of Daily Living (ADL) are crucial for providing effective care to frail older adults living alone. A step forward in addressing this challenge is the deployment of smart home sensors capturing the intrinsic nature of ADLs performed by these people. As the real-life scenario is characterized by a comprehensive range of ADLs and smart home layouts, deviations are expected in the number of sensor events per activity (SEPA), a variable often used for training activity recognition models. Such models, however, rely on the availability of suitable and representative data collection and is habitually expensive and resource-intensive. Simulation tools are an alternative for tackling these barriers; nonetheless, an ongoing challenge is their ability to generate synthetic data representing the real SEPA. Hence, this paper proposes the use of Poisson regression modelling for transforming simulated data in a better approximation of real SEPA. First, synthetic and real data were compared to verify the equivalence hypothesis. Then, several Poisson regression models were formulated for estimating real SEPA using simulated data. The outcomes revealed that real SEPA can be better approximated ( R pred 2 = 92.72 % ) if synthetic data is post-processed through Poisson regression incorporating dummy variables.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4503
Author(s):  
Jose Roberto Vargas Rivero ◽  
Thiemo Gerbich ◽  
Boris Buschardt ◽  
Jia Chen

In contrast to previous works on data augmentation using LIDAR (Light Detection and Ranging), which mostly consider point clouds under good weather conditions, this paper uses point clouds which are affected by spray. Spray water can be a cause of phantom braking and understanding how to handle the extra detections caused by it is an important step in the development of ADAS (Advanced Driver Assistance Systems)/AV (Autonomous Vehicles) functions. The extra detections caused by spray cannot be safely removed without considering cases in which real solid objects may be present in the same region in which the detections caused by spray take place. As collecting real examples would be extremely difficult, the use of synthetic data is proposed. Real scenes are reconstructed virtually with an added extra object in the spray region, in a way that the detections caused by this obstacle match the characteristics a real object in the same position would have regarding intensity, echo number and occlusion. The detections generated by the obstacle are then used to augment the real data, obtaining, after occlusion effects are added, a good approximation of the desired training data. This data is used to train a classifier achieving an average F-Score of 92. The performance of the classifier is analyzed in detail based on the characteristics of the synthetic object: size, position, reflection, duration. The proposed method can be easily expanded to different kinds of obstacles and classifier types.


Sign in / Sign up

Export Citation Format

Share Document