scholarly journals A New Tool to Estimate Inundation Depths by Spatial Interpolation (RAPIDE): Design, Application and Impact on Quantitative Assessment of Flood Damages

Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1805 ◽  
Author(s):  
Anna Scorzini ◽  
Alessio Radice ◽  
Daniela Molinari

Rapid tools for the prediction of the spatial distribution of flood depths within inundated areas are necessary when the implementation of complex hydrodynamic models is not possible due to time constraints or lack of data. For example, similar tools may be extremely useful to obtain first estimates of flood losses in the aftermath of an event, or for large-scale river basin planning. This paper presents RAPIDE, a new GIS-based tool for the estimation of the water depth distribution that relies only on the perimeter of the inundation and a digital terrain model. RAPIDE is based on a spatial interpolation of water levels, starting from the hypothesis that the perimeter of the flooded area is the locus of points having null water depth. The interpolation is improved by (i) the use of auxiliary lines, perpendicular to the river reach, along which additional control points are placed and (ii) the possibility to introduce a mask for filtering interpolation points near critical areas. The reliability of RAPIDE is tested for the 2002 flood in Lodi (northern Italy), by comparing the inundation depth maps obtained by the rapid tool to those from 2D hydraulic modelling. The change of the results, related to the use of either method, affects the quantitative estimation of direct damages very limitedly. The results, therefore, show that RAPIDE can provide accurate flood depth predictions, with errors that are fully compatible with its use for river-basin scale flood risk assessments and civil protection purposes.

Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 896
Author(s):  
Thanh Thu Nguyen ◽  
Makoto Nakatsugawa ◽  
Tomohito J. Yamada ◽  
Tsuyoshi Hoshino

This study aims to evaluate the change in flood inundation in the Chitose River basin (CRB), a tributary of the Ishikari River, considering the extreme rainfall impacts and topographic vulnerability. The changing impacts were assessed using a large-ensemble rainfall dataset with a high resolution of 5 km (d4PDF) as input data for the rainfall–runoff–inundation (RRI) model. Additionally, the prediction of time differences between the peak discharge in the Chitose River and peak water levels at the confluence point intersecting the Ishikari River were improved compared to the previous study. Results indicate that due to climatic changes, extreme river floods are expected to increase by 21–24% in the Ishikari River basin (IRB), while flood inundation is expected to be severe and higher in the CRB, with increases of 24.5, 46.5, and 13.8% for the inundation area, inundation volume, and peak inundation depth, respectively. Flood inundation is likely to occur in the CRB downstream area with a frequency of 90–100%. Additionally, the inundation duration is expected to increase by 5–10 h here. Moreover, the short time difference (0–10 h) is predicted to increase significantly in the CRB. This study provides useful information for policymakers to mitigate flood damage in vulnerable areas.


2021 ◽  
Vol 13 (15) ◽  
pp. 3023
Author(s):  
Jinghua Xiong ◽  
Shenglian Guo ◽  
Jiabo Yin ◽  
Lei Gu ◽  
Feng Xiong

Flooding is one of the most widespread and frequent weather-related hazards that has devastating impacts on the society and ecosystem. Monitoring flooding is a vital issue for water resources management, socioeconomic sustainable development, and maintaining life safety. By integrating multiple precipitation, evapotranspiration, and GRACE-Follow On (GRAFO) terrestrial water storage anomaly (TWSA) datasets, this study uses the water balance principle coupled with the CaMa-Flood hydrodynamic model to access the spatiotemporal discharge variations in the Yangtze River basin during the 2020 catastrophic flood. The results show that: (1) TWSA bias dominates the overall uncertainty in runoff at the basin scale, which is spatially governed by uncertainty in TWSA and precipitation; (2) spatially, a field significance at the 5% level is discovered for the correlations between GRAFO-based runoff and GLDAS results. The GRAFO-derived discharge series has a high correlation coefficient with either in situ observations and hydrological simulations for the Yangtze River basin, at the 0.01 significance level; (3) the GRAFO-derived discharge observes the flood peaks in July and August and the recession process in October 2020. Our developed approach provides an alternative way of monitoring large-scale extreme hydrological events with the latest GRAFO release and CaMa-Flood model.


2020 ◽  
Vol 15 (4) ◽  
pp. 1083-1095
Author(s):  
To Viet Thang ◽  
Nguyen T. Thu Nga ◽  
Ngo Le Long

Abstract Upstream hydropower development has a great impact on downstream flows. According to the Regulation of Multi-reservoir Operation in Vu Gia – Thu Bon River Basin (Regulation 15371), four large-scale upstream reservoirs must discharge certain flow during the dry season to increase water levels at downstream hydrological stations named Ai Nghia and Giao Thuy. These stations are used as the control points for the downstream water supply. An optimizing-simulation based model was developed that both maximizes total electricity production and ensures minimum flow downstream as required. A thousand combinations of the reservoir inflows were generated by Monte Carlo simulation, considering the correlation between tributaries. Then, the Scatter search algorithm available in the Optquest module of Crystal Ball was used to find the optimal release from the reservoirs. The results show that the current Regulation 1537 can be improved for more efficient water resources management.


2013 ◽  
Vol 45 (1) ◽  
pp. 148-164 ◽  
Author(s):  
Flemming Finsen ◽  
Christian Milzow ◽  
Richard Smith ◽  
Philippa Berry ◽  
Peter Bauer-Gottwein

Measurements of river and lake water levels from space-borne radar altimeters (past missions include ERS, Envisat, Jason, Topex) are useful for calibration and validation of large-scale hydrological models in poorly gauged river basins. Altimetry data availability over the downstream reaches of the Brahmaputra is excellent (17 high-quality virtual stations from ERS-2, 6 from Topex and 10 from Envisat are available for the Brahmaputra). In this study, altimetry data are used to update a large-scale Budyko-type hydrological model of the Brahmaputra river basin in real time. Altimetry measurements are converted to discharge using rating curves of simulated discharge versus observed altimetry. This approach makes it possible to use altimetry data from river cross sections where both in-situ rating curves and accurate river cross section geometry are not available. Model updating based on radar altimetry improved model performance considerably. The Nash–Sutcliffe model efficiency increased from 0.77 to 0.83. Real-time river basin modelling using radar altimetry has the potential to improve the predictive capability of large-scale hydrological models elsewhere on the planet.


2020 ◽  
Vol 21 (10) ◽  
pp. 2375-2389
Author(s):  
Hector Macian-Sorribes ◽  
Ilias Pechlivanidis ◽  
Louise Crochemore ◽  
Manuel Pulido-Velazquez

AbstractStreamflow forecasting services driven by seasonal meteorological forecasts from dynamic prediction systems deliver valuable information for decision-making in the water sector. Moving beyond the traditional river basin boundaries, large-scale hydrological models enable a coordinated, efficient, and harmonized anticipation and management of water-related risks (droughts, floods). However, the use of forecasts from such models at the river basin scale remains a challenge, depending on how the model reproduces the hydrological features of each particular river basin. Consequently, postprocessing of forecasts is a crucial step to ensure usefulness at the river basin scale. In this paper we present a methodology to postprocess seasonal streamflow forecasts from large-scale hydrological models and advance their quality for local applications. It consists of fuzzy logic systems that bias-adjust seasonal forecasts from a large-scale hydrological model by comparing its modeled streamflows with local observations. The methodology is demonstrated using forecasts from the pan-European hydrological model E-HYPE at the Jucar River basin (Spain). Fuzzy postprocessed forecasts are compared to postprocessed forecasts derived from a quantile mapping approach as a benchmark. Fuzzy postprocessing was able to provide skillful streamflow forecasts for the Jucar River basin, keeping most of the skill of raw E-HYPE forecasts and also outperforming quantile-mapping-based forecasts. The proposed methodology offers an efficient one-to-one mapping between large-scale modeled streamflows and basin-scale observations preserving its temporal dependence structure and can adapt its input set to increase the skill of postprocessed forecasts.


2016 ◽  
Vol 11 (6) ◽  
pp. 1062-1072 ◽  
Author(s):  
Shun Kudo ◽  
◽  
Atsuhiro Yorozuya ◽  
Hiroshi Koseki ◽  
Yoichi Iwami ◽  
...  

This study simulated the inundation process in the Lower Mekong River Basin (LMB). The LMB has suffered from severe floods, especially in 2000 and 2011. To quantify the inundation of water in a basin where large-scale inundation by river water occurs, understanding the conveyance of a river channel during a flood is particularly important. Therefore, we conducted a field survey using an acoustic Doppler current profiler (aDcp) to understand the longitudinal distribution of the width and depth of the river channel and the variation in hydraulic resistance with respect to shear stress on the riverbed. It was found that the width and depth vary longitudinally, and the relationship between them can be estimated by an equation derived from governing equations of water and sediment and the bed load formula. Furthermore, it was revealed that hydraulic resistance decreases with increasing non-dimensional shear stress. Then, the characteristics of the river channel were incorporated into the runoff-inundation simulation. Furthermore, inundation water should be validated not only in terms of inundation extent but also with respect to water depth and velocity. These were estimated using 8-day composite surface reflectance data from the Moderate Resolution Imaging Spectrometer (MODIS) and the SRTM. Simulation results indicated that water level and discharge within the river channel were able to reproduce observed values. Additionally, simulated inundation extent, water velocity, and water depth over the floodplain showed reasonable agreement with the results using the data from the MODIS and the SRTM. Although there are some elements that should be improved, the inundation process in the LMB was simulated appropriately despite its complexity. The method described in this study to set a calculation condition and to validate variables over a floodplain should be useful for runoff-inundation simulation in various large-scale basins.


2020 ◽  
Vol 12 (18) ◽  
pp. 7371
Author(s):  
Farid Faridani ◽  
Sirus Bakhtiari ◽  
Alireza Faridhosseini ◽  
Micheal J. Gibson ◽  
Raziyeh Farmani ◽  
...  

There is not enough data and computational power for conventional flood mapping methods in many parts of the world, thus fast and low-data-demanding methods are very useful in facing the disaster. This paper presents an innovative procedure for estimating flood extent and depth using only DEM SRTM 30 m and the Geomorphic Flood Index (GFI). The Geomorphologic Flood Assessment (GFA) tool which is the corresponding application of the GFI in QGIS is implemented to achieved the results in three basins in Iran. Moreover, the novel concept of Intensity-Duration-Frequency-Area (IDFA) curves is introduced to modify the GFI model by imposing a constraint on the maximum hydrologically contributing area of a basin. The GFA model implements the linear binary classification algorithm to classify a watershed into flooded and non-flooded areas using an optimized GFI threshold that minimizes the errors with a standard flood map of a small region in the study area. The standard hydraulic model envisaged for this study is the Cellular Automata Dual-DraInagE Simulation (CADDIES) 2D model which employs simple transition rules and a weight-based system rather than complex shallow water equations allowing fast flood modelling for large-scale problems. The results revealed that the floodplains generated by the GFI has a good agreement with the standard maps, especially in the fluvial rivers. However, the performance of the GFI decreases in the less steep and alluvial rivers. With some overestimation, the GFI model is also able to capture the general trend of water depth variations in comparison with the CADDIES-2D flood depth map. The modifications made in the GFI model, to confine the maximum precipitable area through implementing the IDFAs, improved the classification of flooded area and estimation of water depth in all study areas. Finally, the calibrated GFI thresholds were used to achieve the complete 100-year floodplain maps of the study areas.


Author(s):  
Andreas Laug ◽  
Falko Turner ◽  
Stefan Engels ◽  
Junbo Wang ◽  
Torsten Haberzettl ◽  
...  

Fluctuating lake levels are an important driver of ecosystem change, and changes in the precipitation/evaporation balance of a region can lead to undesirable changes in ecosystem functioning. Large-scale changes in hydrology will become increasingly more likely as a result of ongoing climate change in the coming century. This is especially true for the Tibetan Plateau, which plays a crucial role as the “Asian water tower” for the surrounding densely populated regions. Chironomids (Diptera: Chironomidae) have proven to be one of the most valuable bioindicators for monitoring and reconstructing the development of aquatic ecosystems. Besides temperature, water depth and salinity are two of the most important environmental factors affecting chironomids. To study the relationship between chironomids and water depth, we analyzed surface sediment samples of two large Tibetan lakes, Selin Co and Taro Co. These lakes have similar environmental conditions (e.g. elevation, temperature and oxygenation) but show strong differences in salinity (7–10 and 0.5 ppt, respectively). Our results show that the chironomid assemblages in both lakes have similar water depths at which the fauna abruptly changes in composition, despite different faunal assemblages. The most important boundaries were identified at 0.8 and 16 m water depth. While the uppermost meter, the “splash zone”, is characterized by distinctly different conditions, resulting from waves and changing water levels, the cause of the lower zone boundary remains enigmatic. Even though none of the measured water depth-related factors, such as water temperature, oxygen content, sediment properties, light intensity or macrophyte vegetation, show a distinct change at 16 m water depth, comparison to other records show that a similar change in the chironomid fauna occurs at 16 m water depth in large, deep lakes around the world. We propose that this boundary might be connected to water pressure influencing the living conditions of the larvae or the absolute distance to the surface that has to be covered for the chironomid larvae to hatch. We conclude that water depth either directly or indirectly exerts a strong control on the chironomid assemblages even under different salinities, resulting in distribution patterns that can be used to reconstruct past fluctuations in water depths.


Water Policy ◽  
2004 ◽  
Vol 6 (2) ◽  
pp. 89-102 ◽  
Author(s):  
Bruce Lankford

Observations in Tanzania indicate that the improvement of traditional smallholder irrigation does not necessarily result in improved water performance, greater equity and reduced conflict. The usual outcomes of such projects is a gain in water for the system being upgraded, especially if located upstream, accompanied by less ability to share water at the river basin scale. This paper concludes that these projects do not commonly understand, match and respond to the complexities of well-developed and evolving smallholder irrigation found in multi-user river basins. Without re-appraisal, the risk is that donors will be unsuccessful with smallholder irrigation and turn away from this sector, as they did with large-scale irrigation.


2013 ◽  
Vol 353-356 ◽  
pp. 2281-2285 ◽  
Author(s):  
Faridah Othman ◽  
Noor Farahain Muhammad Amin ◽  
Lau Mi Fung ◽  
Alaa Eldin Mohamed Elamin

The large-scale atmospheric circulations and anomalies have been shown to have asignificant impact on seasonal weather over many parts of the world including Malaysia. Malaysia is located in the South East Asia with Southwest and Northeast Monsoons, experiences numerous flooding from year 1926 to 2012.Flood has become a regular disaster in Malaysia which happens every year in different states especially during the northeast monsoon. In December 2006 and January 2007, the Northeast Monsoon brought heavy rain through series of continuous extreme storms that caused devastating floods in the southern region of Peninsular Malaysia particularly to Kota Tinggi, Johor. The storms had occurred in two separate phases in late December 2006 and early January 2007 with atotal precipitation in four days exceeding twice of the monthly rainfall in which some places recorded a higher number. Johor River originates from Mt. Gemuruh and flows through the southeastern part of Johor and finally into the Straits of Johor. The 2006 average rainfall return period is 50-years while the 2007 gives more than 100-years return period. The objective of this study is to perform a flood simulation of the river basin using InfoWorks RS. The rainfall and stream flow data have been used as the hydrological input for the model. There are over 140 nodes representing the cross section throughout the length of the river. From the study, the main finding from the flood mapping process is that the simulated flood depth and flood risk map. Comparison between the simulated flood depth and observed flood depth has been done and shown a reasonable agreement.


Sign in / Sign up

Export Citation Format

Share Document