ANALYSIS OF OPTIONS PRICING METHODS: THE BLACK-SCHOLES MODEL AND THE MONTE CARLO METHOD

Author(s):  
LEISEN D. YUNUSOVA
Author(s):  
Leysen Yunusova

Currently, the market of financial instruments is quite developed. Traditional financial instruments prevail on the Russian market, while derivatives of these financial instruments (options, futures, forwards, bills, etc.) are faintly developed. The reason for this situation is that few participants in the financial market can correctly evaluate financial products. Scientific researchers and large companies use different methods of estimating the value of financial instruments in making strategic investment decisions, since incorrect calculations can be irreparable. Therefore, it is important to apply the appropriate pricing methodology to various derivative financial instruments. The topic of derivative financial instruments in terms of scientific and theoretical aspects has been worked out in sufficient volume, but as for the pricing of these instruments, there are some gaps. There is still no method for pricing derivatives that would allow you to accurately assess the value of financial instruments for subsequent effective investment decisions. In this article considers the methodology of pricing of derivative financial instruments using the Black-Scholes model and the Monte Carlo method. The presented estimation methods allow us to calculate the range of price values that allows us to provide the most accurate expected results.


2021 ◽  
Author(s):  
Pablo Olivares ◽  
Alexander Alvarez

We propose a closed-form approximation for the price of basket options under a multivariate Black-Scholes model. The method is based on Taylor and Chebyshev expansions and involves mixed exponential-power moments of a Gaussian distribution. Our numerical results show that both approaches are comparable in accuracy to a standard Monte Carlo method, with a lesser computational effort


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Pablo Olivares ◽  
Alexander Alvarez

We propose a closed-form approximation for the price of basket options under a multivariate Black-Scholes model. The method is based on Taylor and Chebyshev expansions and involves mixed exponential-power moments of a Gaussian distribution. Our numerical results show that both approaches are comparable in accuracy to a standard Monte Carlo method, with a lesser computational effort.


2021 ◽  
Author(s):  
Pablo Olivares ◽  
Alexander Alvarez

We propose a closed-form approximation for the price of basket options under a multivariate Black-Scholes model. The method is based on Taylor and Chebyshev expansions and involves mixed exponential-power moments of a Gaussian distribution. Our numerical results show that both approaches are comparable in accuracy to a standard Monte Carlo method, with a lesser computational effort


2020 ◽  
Vol 2020 (4) ◽  
pp. 25-32
Author(s):  
Viktor Zheltov ◽  
Viktor Chembaev

The article has considered the calculation of the unified glare rating (UGR) based on the luminance spatial-angular distribution (LSAD). The method of local estimations of the Monte Carlo method is proposed as a method for modeling LSAD. On the basis of LSAD, it becomes possible to evaluate the quality of lighting by many criteria, including the generally accepted UGR. UGR allows preliminary assessment of the level of comfort for performing a visual task in a lighting system. A new method of "pixel-by-pixel" calculation of UGR based on LSAD is proposed.


Author(s):  
V.A. Mironov ◽  
S.A. Peretokin ◽  
K.V. Simonov

The article is a continuation of the software research to perform probabilistic seismic hazard analysis (PSHA) as one of the main stages in engineering seismic surveys. The article provides an overview of modern software for PSHA based on the Monte Carlo method, describes in detail the work of foreign programs OpenQuake Engine and EqHaz. A test calculation of seismic hazard was carried out to compare the functionality of domestic and foreign software.


2019 ◽  
Vol 20 (12) ◽  
pp. 1151-1157 ◽  
Author(s):  
Alla P. Toropova ◽  
Andrey A. Toropov

Prediction of physicochemical and biochemical behavior of peptides is an important and attractive task of the modern natural sciences, since these substances have a key role in life processes. The Monte Carlo technique is a possible way to solve the above task. The Monte Carlo method is a tool with different applications relative to the study of peptides: (i) analysis of the 3D configurations (conformers); (ii) establishment of quantitative structure – property / activity relationships (QSPRs/QSARs); and (iii) development of databases on the biopolymers. Current ideas related to application of the Monte Carlo technique for studying peptides and biopolymers have been discussed in this review.


Sign in / Sign up

Export Citation Format

Share Document