scholarly journals The Gravity Collective: A Search for the Electromagnetic Counterpart to the Neutron Star–Black Hole Merger GW190814

2021 ◽  
Vol 923 (2) ◽  
pp. 258
Author(s):  
Charles D. Kilpatrick ◽  
David A. Coulter ◽  
Iair Arcavi ◽  
Thomas G. Brink ◽  
Georgios Dimitriadis ◽  
...  

Abstract We present optical follow-up imaging obtained with the Katzman Automatic Imaging Telescope, Las Cumbres Observatory Global Telescope Network, Nickel Telescope, Swope Telescope, and Thacher Telescope of the LIGO/Virgo gravitational wave (GW) signal from the neutron star–black hole (NSBH) merger GW190814. We searched the GW190814 localization region (19 deg2 for the 90th percentile best localization), covering a total of 51 deg2 and 94.6% of the two-dimensional localization region. Analyzing the properties of 189 transients that we consider as candidate counterparts to the NSBH merger, including their localizations, discovery times from merger, optical spectra, likely host galaxy redshifts, and photometric evolution, we conclude that none of these objects are likely to be associated with GW190814. Based on this finding, we consider the likely optical properties of an electromagnetic counterpart to GW190814, including possible kilonovae and short gamma-ray burst afterglows. Using the joint limits from our follow-up imaging, we conclude that a counterpart with an r-band decline rate of 0.68 mag day−1, similar to the kilonova AT 2017gfo, could peak at an absolute magnitude of at most −17.8 mag (50% confidence). Our data are not constraining for “red” kilonovae and rule out “blue” kilonovae with M > 0.5 M ⊙ (30% confidence). We strongly rule out all known types of short gamma-ray burst afterglows with viewing angles <17° assuming an initial jet opening angle of ∼5.°2 and explosion energies and circumburst densities similar to afterglows explored in the literature. Finally, we explore the possibility that GW190814 merged in the disk of an active galactic nucleus, of which we find four in the localization region, but we do not find any candidate counterparts among these sources.

2021 ◽  
Vol 923 (2) ◽  
pp. L32
Author(s):  
S. Dichiara ◽  
R. L. Becerra ◽  
E. A. Chase ◽  
E. Troja ◽  
W. H. Lee ◽  
...  

Abstract We report the results of our follow-up campaign for the neutron-star—black-hole (NSBH) merger GW200115 detected during the O3 run of the Advanced LIGO and Advanced Virgo detectors. We obtained wide-field observations with the Deca-Degree Optical Transient Imager covering ∼20% of the total probability area down to a limiting magnitude of w = 20.5 AB at ∼23 hr after the merger. Our search for counterparts returns a single candidate (AT2020aeo), likely not associated with the merger. In total, only 25 sources of interest were identified by the community and later discarded as unrelated to the GW event. We compare our upper limits with the emission predicted by state-of-the-art kilonova simulations and disfavor high-mass ejecta (>0.1 M ⊙), indicating that the spin of the system is not particularly high. By combining our optical limits with gamma-ray constraints from Swift and Fermi, we disfavor the presence of a standard short-duration burst for viewing angles ≲15° from the jet axis. Our conclusions are, however, limited by the large localization region of this GW event, and accurate prompt positions remain crucial to improving the efficiency of follow-up efforts.


2022 ◽  
Vol 924 (1) ◽  
pp. 16
Author(s):  
K. P. Mooley ◽  
B. Margalit ◽  
C. J. Law ◽  
D. A. Perley ◽  
A. T. Deller ◽  
...  

Abstract We present new radio and optical data, including very-long-baseline interferometry, as well as archival data analysis, for the luminous, decades-long radio transient FIRST J141918.9+394036. The radio data reveal a synchrotron self-absorption peak around 0.3 GHz and a radius of around 1.3 mas (0.5 pc) 26 yr post-discovery, indicating a blastwave energy ∼5 × 1050 erg. The optical spectrum shows a broad [O iii]λ4959,5007 emission line that may indicate collisional excitation in the host galaxy, but its association with the transient cannot be ruled out. The properties of the host galaxy are suggestive of a massive stellar progenitor that formed at low metallicity. Based on the radio light curve, blastwave velocity, energetics, nature of the host galaxy and transient rates, we find that the properties of J1419+3940 are most consistent with long gamma-ray burst (LGRB) afterglows. Other classes of (optically discovered) stellar explosions as well as neutron star mergers are disfavored, and invoking any exotic scenario may not be necessary. It is therefore likely that J1419+3940 is an off-axis LGRB afterglow (as suggested by Law et al. and Marcote et al.), and under this premise the inverse beaming fraction is found to be f b − 1 ≃ 280 − 200 + 700 , corresponding to an average jet half-opening angle < θ j > ≃ 5 − 2 + 4 degrees (68% confidence), consistent with previous estimates. From the volumetric rate we predict that surveys with the Very Large Array, Australian Square Kilometre Array Pathfinder, and MeerKAT will find a handful of J1419+3940-like events over the coming years.


2019 ◽  
Vol 877 (2) ◽  
pp. 94 ◽  
Author(s):  
Stefano Ascenzi ◽  
Nicola De Lillo ◽  
Carl-Johan Haster ◽  
Frank Ohme ◽  
Francesco Pannarale

Author(s):  
Nils Andersson

This chapter discusses the different stages of an inspiralling neutron star binary system, through the formation of a black hole and the possible emergence of a gamma-ray burst. Tidal effects and the information encoded in the so-called Love numbers are explored. The violent dynamics of the merger is considered and models of gamma-ray bursts and the late time kilonova emission are also explored.


2020 ◽  
Vol 497 (3) ◽  
pp. 3131-3141
Author(s):  
K Gourdji ◽  
A Rowlinson ◽  
R A M J Wijers ◽  
A Goldstein

ABSTRACT What the progenitors of fast radio bursts (FRBs) are, and whether there are multiple types of progenitors are open questions. The advent of localized FRBs with host galaxy redshifts allows the various emission models to be directly tested for the first time. Given the recent localizations of two non-repeating FRBs (FRB 180924 and FRB 190523), we discuss a selection of FRB emission models and demonstrate how we can place constraints on key model parameters such as e magnetic field strength and age of the putative FRB-emitting neutron star. In particular, we focus on models related to compact binary merger events involving at least one neutron star, motivated by commonalities between the host galaxies of the FRBs and the hosts of such merger events/short gamma-ray bursts (SGRBs). We rule out the possibility that either FRB was produced during the final inspiral stage of a merging binary system. Where possible, we predict the light curve of electromagnetic emission associated with a given model and use it to recommend multiwavelength follow-up strategies that may help confirm or rule out models for future FRBs. In addition, we conduct a targeted sub-threshold search in Fermi Gamma-ray Burst Monitor data for potential SGRB candidates associated with either FRB, and show what a non-detection means for relevant models. The methodology presented in this study may be easily applied to future localized FRBs, and adapted to sources with possibly core-collapse supernova progenitors, to help constrain potential models for the FRB population at large.


Author(s):  
Andrew King

I consider various possibilities for making gamma-ray bursts, particularly from close binaries. In addition to the much-studied neutron star+neutron star and black hole+neutron star cases usually considered good candidates for short-duration bursts, there are also other possibilities. In particular, neutron star+massive white dwarf has several desirable features. These systems are likely to produce long-duration gamma-ray bursts (GRBs), in some cases definitely without an accompanying supernova, as observed recently. This class of burst would have a strong correlation with star formation and occur close to the host galaxy. However, rare members of the class need not be near star-forming regions and could have any type of host galaxy. Thus, a long-duration burst far from any star-forming region would also be a signature of this class. Estimates based on the existence of a known progenitor suggest that this type of GRB may be quite common, in agreement with the fact that the absence of a supernova can only be established in nearby bursts.


2020 ◽  
Vol 895 (1) ◽  
pp. 58 ◽  
Author(s):  
B. P. Gompertz ◽  
A. J. Levan ◽  
N. R. Tanvir

2012 ◽  
Vol 8 (S292) ◽  
pp. 190-190
Author(s):  
J. M. Chen ◽  
L. W. Jia ◽  
E. W. Liang

AbstractGRBs are the most luminous events in the Universe. They are detectable from local to high-z universe and may serve as probes for high-z galaxies (e.g., Savaglio et al. 2009; Kewley & Dopita 2002). We compile the observations for 61 GRB host galaxies from literature. Their redshifts range from 0.0085 to 6.295. We present the statistical properties of the GRB host galaxies, including the stellar mass (M*), star-forming rate (SFR), metallicity (Z), extinction (AV), and neutral hydrogen column density (NH). We explore possible correlations among the properties of gamma-ray burst host galaxies and their cosmic evolution with observations of 61 GRB host galaxies. Our results are shown in Figure 1. A clear Z-M* relation is found in our sample, which is Z ~ M0.4. The host galaxies of local GRBs with detection of accompanied supernovae also share the same relation with high-z GRB host galaxies. A trend that a more massive host galaxy tends to have a higher star-formation rate is found. The best linear fit gives a tentative relation, i.e, SFR ~ M0.75. No any correlation is found between AV and NH. A GRB host galaxy at a higher redshift also tends to have a higher SFR. Even in the same redshift, the SFR may vary over three orders of magnitude. The metallicity of the GRB host galaxies is statistically higher than that of the QSO DLAs. The full version of our results please refer to Chen et al. (2012).


Author(s):  
J. M. Castro Cerón ◽  
A. J. Castro-Tirado ◽  
R. Hudec ◽  
J. Soldán ◽  
M. Bernas ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document