scholarly journals Classification of positive radial solutions to a weighted biharmonic equation

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yuhao Yan

<p style='text-indent:20px;'>In this paper, we consider the weighted fourth order equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \Delta(|x|^{-\alpha}\Delta u)+\lambda \text{div}(|x|^{-\alpha-2}\nabla u)+\mu|x|^{-\alpha-4}u = |x|^\beta u^p\quad \text{in} \quad \mathbb{R}^n \backslash \{0\}, $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ n\geq 5 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ -n&lt;\alpha&lt;n-4 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ p&gt;1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ (p,\alpha,\beta,n) $\end{document}</tex-math></inline-formula> belongs to the critical hyperbola</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \frac{n+\alpha}{2}+\frac{n+\beta}{p+1} = n-2. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>We prove the existence of radial solutions to the equation for some <inline-formula><tex-math id="M5">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ \mu $\end{document}</tex-math></inline-formula>. On the other hand, let <inline-formula><tex-math id="M7">\begin{document}$ v(t): = |x|^{\frac{n-4-\alpha}{2}}u(|x|) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M8">\begin{document}$ t = -\ln |x| $\end{document}</tex-math></inline-formula>, then for the radial solution <inline-formula><tex-math id="M9">\begin{document}$ u $\end{document}</tex-math></inline-formula> with non-removable singularity at origin, <inline-formula><tex-math id="M10">\begin{document}$ v(t) $\end{document}</tex-math></inline-formula> is a periodic function if <inline-formula><tex-math id="M11">\begin{document}$ \alpha \in (-2,n-4) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M12">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M13">\begin{document}$ \mu $\end{document}</tex-math></inline-formula> satisfy some conditions; while for <inline-formula><tex-math id="M14">\begin{document}$ \alpha \in (-n,-2] $\end{document}</tex-math></inline-formula>, there exists a radial solution with non-removable singularity and the corresponding function <inline-formula><tex-math id="M15">\begin{document}$ v(t) $\end{document}</tex-math></inline-formula> is not periodic. We also get some results about the best constant and symmetry breaking, which is closely related to the Caffarelli-Kohn-Nirenberg type inequality.</p>

2017 ◽  
Vol 6 (2) ◽  
pp. 165-182 ◽  
Author(s):  
Roberta Filippucci ◽  
Federico Vinti

AbstractIn this paper we give a classification of positive radial solutions of the following system:$\Delta u=v^{m},\quad\Delta v=h(|x|)g(u)f(|\nabla u|),$in the open ball ${B_{R}}$, with ${m>0}$, and f, g, h nonnegative nondecreasing continuous functions. In particular, we deal with both explosive and bounded solutions. Our results involve, as in [27], a generalization of the well-known Keller–Osserman condition, namely, ${\int_{1}^{\infty}(\int_{0}^{s}F(t)\,dt)^{-m/(2m+1)}\,ds<\infty}$, where ${F(t)=\int_{0}^{t}f(s)\,ds}$. Moreover, in the second part of the paper, the p-Laplacian version, given by ${\Delta_{p}u=v^{m}}$, ${\Delta_{p}v=f(|\nabla u|)}$, is treated. When ${p\geq 2}$, we prove a necessary condition for the existence of a solution with at least a blow up component at the boundary, precisely ${\int_{1}^{\infty}(\int_{0}^{s}F(t)\,dt)^{-m/(mp+p-1)}s^{(p-2)(p-1)/(mp+p-1)}% \,ds<\infty}$.


2009 ◽  
Vol 2009 ◽  
pp. 1-14 ◽  
Author(s):  
María Elena Acevedo ◽  
Marco Antonio Acevedo ◽  
Federico Felipe

Bidirectional Associative Memories (BAMs) based on first model proposed by Kosko do not have perfect recall of training set, and their algorithm must iterate until it reaches a stable state. In this work, we use the model of Alpha-Beta BAM to classify automatically cancer recurrence in female patients with a previous breast cancer surgery. Alpha-Beta BAM presents perfect recall of all the training patterns and it has a one-shot algorithm; these advantages make to Alpha-Beta BAM a suitable tool for classification. We use data from Haberman database, and leave-one-out algorithm was applied to analyze the performance of our model as classifier. We obtain a percentage of classification of 99.98%.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ignacio Guerra

<p style='text-indent:20px;'>We consider the following semilinear problem with a gradient term in the nonlinearity</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} -\Delta u = \lambda \frac{(1+|\nabla u|^q)}{(1-u)^p}\quad\text{in}\quad\Omega,\quad u&gt;0\quad \text{in}\quad \Omega, \quad u = 0\quad\text{on}\quad \partial \Omega. \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \lambda,p,q&gt;0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> be a bounded, smooth domain in <inline-formula><tex-math id="M3">\begin{document}$ {\mathbb R}^N $\end{document}</tex-math></inline-formula>. We prove that when <inline-formula><tex-math id="M4">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a unit ball and <inline-formula><tex-math id="M5">\begin{document}$ p = 1 $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M6">\begin{document}$ q\in (0,q^*(N)) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M7">\begin{document}$ q^*(N)\in (1,2) $\end{document}</tex-math></inline-formula>, we have infinitely many radial solutions for <inline-formula><tex-math id="M8">\begin{document}$ 2\leq N&lt;2\frac{6-q+2\sqrt{8-2q}}{(2-q)^2}+1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M9">\begin{document}$ \lambda = \tilde \lambda $\end{document}</tex-math></inline-formula>. On the other hand, for <inline-formula><tex-math id="M10">\begin{document}$ N&gt;2\frac{6-q+2\sqrt{8-2q}}{(2-q)^2}+1 $\end{document}</tex-math></inline-formula> there exists a unique radial solution for <inline-formula><tex-math id="M11">\begin{document}$ 0&lt;\lambda&lt;\tilde \lambda $\end{document}</tex-math></inline-formula>.</p>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Zongming Guo ◽  
Fangshu Wan

<p style='text-indent:20px;'>Existence and uniqueness of positive radial solutions of some weighted fourth order elliptic Navier and Dirichlet problems in the unit ball <inline-formula><tex-math id="M1">\begin{document}$ B $\end{document}</tex-math></inline-formula> are studied. The weights can be singular at <inline-formula><tex-math id="M2">\begin{document}$ x = 0 \in B $\end{document}</tex-math></inline-formula>. Existence of positive radial solutions of the problems is obtained via variational methods in the weighted Sobolev spaces. To obtain the uniqueness results, we need to know exactly the asymptotic behavior of the solutions at the singular point <inline-formula><tex-math id="M3">\begin{document}$ x = 0 $\end{document}</tex-math></inline-formula>.</p>


Sign in / Sign up

Export Citation Format

Share Document