Classification of positive radial solutions to a weighted biharmonic equation
<p style='text-indent:20px;'>In this paper, we consider the weighted fourth order equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \Delta(|x|^{-\alpha}\Delta u)+\lambda \text{div}(|x|^{-\alpha-2}\nabla u)+\mu|x|^{-\alpha-4}u = |x|^\beta u^p\quad \text{in} \quad \mathbb{R}^n \backslash \{0\}, $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ n\geq 5 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ -n<\alpha<n-4 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ p>1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ (p,\alpha,\beta,n) $\end{document}</tex-math></inline-formula> belongs to the critical hyperbola</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \frac{n+\alpha}{2}+\frac{n+\beta}{p+1} = n-2. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>We prove the existence of radial solutions to the equation for some <inline-formula><tex-math id="M5">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ \mu $\end{document}</tex-math></inline-formula>. On the other hand, let <inline-formula><tex-math id="M7">\begin{document}$ v(t): = |x|^{\frac{n-4-\alpha}{2}}u(|x|) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M8">\begin{document}$ t = -\ln |x| $\end{document}</tex-math></inline-formula>, then for the radial solution <inline-formula><tex-math id="M9">\begin{document}$ u $\end{document}</tex-math></inline-formula> with non-removable singularity at origin, <inline-formula><tex-math id="M10">\begin{document}$ v(t) $\end{document}</tex-math></inline-formula> is a periodic function if <inline-formula><tex-math id="M11">\begin{document}$ \alpha \in (-2,n-4) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M12">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M13">\begin{document}$ \mu $\end{document}</tex-math></inline-formula> satisfy some conditions; while for <inline-formula><tex-math id="M14">\begin{document}$ \alpha \in (-n,-2] $\end{document}</tex-math></inline-formula>, there exists a radial solution with non-removable singularity and the corresponding function <inline-formula><tex-math id="M15">\begin{document}$ v(t) $\end{document}</tex-math></inline-formula> is not periodic. We also get some results about the best constant and symmetry breaking, which is closely related to the Caffarelli-Kohn-Nirenberg type inequality.</p>