scholarly journals Relativistic BGK model for massless particles in the FLRW spacetime

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Byung-Hoon Hwang ◽  
Ho Lee ◽  
Seok-Bae Yun

<p style='text-indent:20px;'>In this paper, we address the Cauchy problem for the relativistic BGK model proposed by Anderson and Witting for massless particles in the Friedmann-Lemaȋtre-Robertson-Walker (FLRW) spacetime. We first derive the explicit form of the Jüttner distribution in the FLRW spacetime, together with a set of nonlinear relations that leads to the conservation laws of particle number, momentum, and energy for both Maxwell-Boltzmann particles and Bose-Einstein particles. Then, we find sufficient conditions that guarantee the existence of equilibrium coefficients satisfying the nonlinear relations and we show that the condition is satisfied through all the induction steps once it is verified for the initial step. Using this observation, we construct explicit solutions of the relativistic BGK model of Anderson-Witting type for massless particles in the FLRW spacetime.</p>

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Malkhaz Ashordia ◽  
Inga Gabisonia ◽  
Mzia Talakhadze

AbstractEffective sufficient conditions are given for the unique solvability of the Cauchy problem for linear systems of generalized ordinary differential equations with singularities.


2020 ◽  
Vol 10 (1) ◽  
pp. 353-370 ◽  
Author(s):  
Hans-Christoph Grunau ◽  
Nobuhito Miyake ◽  
Shinya Okabe

Abstract This paper is concerned with the positivity of solutions to the Cauchy problem for linear and nonlinear parabolic equations with the biharmonic operator as fourth order elliptic principal part. Generally, Cauchy problems for parabolic equations of fourth order have no positivity preserving property due to the change of sign of the fundamental solution. One has eventual local positivity for positive initial data, but on short time scales, one will in general have also regions of negativity. The first goal of this paper is to find sufficient conditions on initial data which ensure the existence of solutions to the Cauchy problem for the linear biharmonic heat equation which are positive for all times and in the whole space. The second goal is to apply these results to show existence of globally positive solutions to the Cauchy problem for a semilinear biharmonic parabolic equation.


Author(s):  
Marina V. Dontsova

The Cauchy problem for a system of two first-order quasilinear equations with absolute terms is considered. The study of this problem’s solvability in original coordinates is based on the method of an additional argument. The existence of the local solution of the problem with smoothness which is not lower than the smoothness of the initial conditions, is proved. Sufficient conditions of existence are determined for the nonlocal solution that is continued by a finite number of steps from the local solution. The proof of the nonlocal resolvability of the Cauchy problem relies on original global estimates.


Universe ◽  
2019 ◽  
Vol 5 (12) ◽  
pp. 224 ◽  
Author(s):  
Stefano Vignolo

We discuss the Cauchy problem and the junction conditions within the framework of f ( R ) -gravity with torsion. We derive sufficient conditions to ensure the well-posedness of the initial value problem, as well as general conditions to join together on a given hypersurface two different solutions of the field equations. The stated results can be useful to distinguish viable from nonviable f ( R ) -models with torsion.


2020 ◽  
Vol 55 ◽  
pp. 60-78
Author(s):  
M.V. Dontsova

We consider a Cauchy problem for a system of two quasilinear equations of the first order with constant terms. The study of the solvability of the Cauchy problem for a system of two quasilinear equations of the first order with constant terms in the original coordinates is based on the method of an additional argument. Theorems on the local and nonlocal existence and uniqueness of solutions to the Cauchy problem are formulated and proved. We prove the existence and uniqueness of the local solution of the Cauchy problem for a system of two quasilinear equations of the first order with constant terms, which has the same smoothness with respect to $x$ as the initial functions of the Cauchy problem. Sufficient conditions for the existence and uniqueness of a nonlocal solution of the Cauchy problem for a system of two quasilinear equations of the first order with constant terms are found; this solution is continued by a finite number of steps from the local solution. The proof of the nonlocal solvability of the Cauchy problem for a system of two quasilinear equations of the first order with constant terms relies on global estimates.


Author(s):  
S. Kamin (Kamenomostskaya)

SynopsisThe author considers the solution of the Cauchy problem for an equationgiving necessary and sufficient conditions for the existence of


2020 ◽  
Vol 66 (1) ◽  
pp. 1-155
Author(s):  
Vasiliy N. Denisov

We study the stabilization of solutions of the Cauchy problem for second-order parabolic equations depending on the behavior of the lower-order coefficients of equations at the infinity and on the growth rate of initial functions. We also consider the stabilization of solution of the first boundary-value problem for a parabolic equation without lower-order coefficients depending on the domain Q where the initial function is defined for t =0. In the first chapter, we study sufficient conditions for uniform in x on a compact K RN stabilization to zero of the solution of the Cauchy problem with divergent elliptic operator and coefficients independent of t and depending only on x. We consider classes of initial functions: bounded in RN, with power growth rate at the infinity in RN, with exponential order at the infinity. Using examples, we show that sufficient conditions are sharp and, moreover, do not allow the uniform in RN stabilization to zero of the solution of the Cauchy problem. In the second chapter, we study the Cauchy problem with elliptic nondivergent operator and coefficients depending on x and t. In different classes of growing initial functions we obtain exact sufficient conditions for stabilization of solutions of the corresponding Cauchy problem uniformly in x on any compact K in RN. We consider examples proving the sharpness of these conditions. In the third chapter, for the solution of the first boundary-value problem without lower-order terms, we obtain necessary and sufficient conditions of uniform in x on any compact in Q stabilization to zero in terms of the domain RN \ Q where Q is the definitional domain of the initial function for t =0. We establish the power estimate for the rate of stabilization of the solution of the boundary-value problem with bounded initial function in the case where RN \ Q is a cone for t =0.


Sign in / Sign up

Export Citation Format

Share Document