Sensitivity Analysis of 1000MW USC Units Shafting Torsional Vibration Based on ANSYS

2012 ◽  
Vol 226-228 ◽  
pp. 162-165
Author(s):  
Shi Liu ◽  
Cong Wang ◽  
Bing Li ◽  
Chang Chen ◽  
Dan Mei Xie

To calculate a shaftings natural frequency of torsional vibration is one of the most important tasks in turbo-generators design, manufacture and frequency adjusting process. The sensitivity analysis of shafting structural parameters impact on the torsional vibration characteristics has important significance in reducing the amplitude of torsional vibration and ensuring the turbo-generators safe operation. In this paper, a 1000MW USC unit was taken as a research object to analyze the shaftings sensitivity to moment of inertia.

Author(s):  
Qing He ◽  
Dongmei Du

The disturbance of electric power system makes large-scale turbine-generator shafts generate torsional vibration. A available method to restrain the torsional vibration of turbine-generator shafts is that all the natural frequencies of torsional vibration of turbine-generator shafts must keep away from the working frequency and its harmonic frequencies as well as all the frequencies that possibly bring on interaction between turbine-generator and electric power system so that the torsional resonation of shafts may not occur. A dynamic design method for natural frequencies of torsional vibration of rotor system based on sensitivity analysis is presented. The sensitivities of natural frequency of torsional vibration to structure parameters of rotor system are obtained by means of the theory of sensitivity. After calculated the torsional vibration dynamic characteristics of original shafts of a torsional vibration stand that simulates the real shafts of 300MW turbine-generator, the dynamic modification for the torsional vibration natural frequency is carried out by the sensitivity analysis method, which makes the first-five natural frequencies of torsional vibration of the stand is very close to the design object. It is proved that the sensitivity analysis method can be used to the dynamic adjustment and optimal design of real shafts of turbine-generator.


1993 ◽  
Vol 115 (3) ◽  
pp. 277-279 ◽  
Author(s):  
Liu Zhong-Sheng ◽  
Chen Su-Huan ◽  
Xu Tao

Design sensitivity analysis of natural frequency for geared shaft systems is of practical importance in the optimal design of these systems. This note provides a simple and easily implemented method to calculate the eigenvalue derivatives of a geared shaft system with respect to a design parameter ν, including gear inertia J, shaft stiffness K, and transmission ratio Q, when the eigensolution is known. An example is given to illustrate the method.


2011 ◽  
Vol 86 ◽  
pp. 380-383 ◽  
Author(s):  
Jun Gang Wang ◽  
Yong Wang ◽  
Yan Tao An ◽  
Qi Lin Huang

This paper takes a helical gear shaft as research subject and discusses the main structural parameters to see how it would affect natural frequency sensitivity. The parametrical model of helical gear shaft is created by using software PROE3.0. The natural frequencies and vibration shapes are calculated by the modal analysis. The relationship between the structural parameters and the natural frequency sensitivity can be obtained by means of ANSYS. The result shows that the structural parameters can affect the natural frequency sensitivity. The variation in low order natural frequency is similar to that in high order natural frequency. The effect of module on the natural frequency sensitivity is more remarkable comparing with pressure angle, modification coefficient and helical angle. Selecting structural parameters reasonably may reduce vibration and noise of the helical gear shaft effectively.


2013 ◽  
Vol 690-693 ◽  
pp. 925-932
Author(s):  
Miao Wang ◽  
Hai Bo Li ◽  
Ya Qun Liu ◽  
Xiao Cheng Huang

Analysis of the vibration characteristics of slope is the basis of dynamic analysis of slope; therefore, it has an important engineering significance. In this paper, ideal joint rock slope was studied by the modal analysis and harmonic response analysis module in the ANSYS software, meanwhile, the section of the model size and the effects of the structural parameters on the vibration characteristics of slope were also discussed. The results show that the stiffness of the structural surface is the key factors that affect the vibration characteristics of slope, and with the stiffness of structural surface increases, the first modal shape of slope was changed from dislocation vibration that along the structural surface to horizontal vibration. Only the first natural frequency can be excited the "resonance" phenomenon in the horizontal direction under the seismic load. Therefore, the joint slope is more easily to be excited "resonance" under earthquake load because of the first natural frequency of joint slope is smaller than homogeneous slope; moreover, this is consistent to the investigation results of Wenchuan Earthquake.


2021 ◽  
pp. 096739112110033
Author(s):  
TG Sreekanth ◽  
M Senthilkumar ◽  
S Manikanta Reddy

Delamination is definitely an important topic in the area of composite structures as it progressively worsens the mechanical performance of fiber-reinforced polymer composite structures in its service period. The detection and severity analysis of delaminations in engineering areas like the aviation industry is vital for safety and economic considerations. The existence of delaminations varies the vibration characteristics such as natural frequencies, mode shapes, etc. of composites and hence this indication can be effectively used for locating and quantifying the delaminations. The changes in vibration characteristics are considered as inputs for the inverse problem to determine the location and size of delaminations. In this paper Artificial Neural Network (ANN) is used for delamination evaluationof glass fiber-reinforced composite beams using natural frequency as typical vibration parameter. The Finite Element Analysis is used for generating the required dataset for ANN. The frequency-based delamination prediction technique is validated by finite element models and experimental modal analysis. The results indicate that the ANN-based back propagation algorithm can predict the location and size of delaminations in composites with good accuracy for numerical natural frequency data but the accuracy is comparitivelyless for experimental natural frequency data.


2012 ◽  
Vol 79 (4) ◽  
Author(s):  
Ramin M. H. Khorasany ◽  
Stanley G. Hutton

Analysis of the linear vibration characteristics of unconstrained rotating isotropic thin disks leads to the important concept of “critical speeds.” These critical rotational speeds are of interest because they correspond to the situation where a natural frequency of the rotating disk, as measured by a stationary observer, is zero. Such speeds correspond physically to the speeds at which a traveling circumferential wave, of shape corresponding to the mode shape of the natural frequency being considered, travel around the disk in the absence of applied forces. At such speeds, according to linear theory, the blade may respond as a space fixed stationary wave and an applied space fixed dc force may induce a resonant condition in the disk response. Thus, in general, linear theory predicts that for rotating disks, with low levels of damping, large responses may be encountered in the region of the critical speeds due to the application of constant space fixed forces. However, large response invalidates the predictions of linear theory which has neglected the nonlinear stiffness produced by the effect of in-plane forces induced by large displacements. In the present paper, experimental studies were conducted in order to measure the frequency response characteristics of rotating disks both in an idling mode as well as when subjected to a space fixed lateral force. The applied lateral force (produced by an air jet) was such as to produce displacements large enough that non linear geometric effects were important in determining the disk frequencies. Experiments were conducted on thin annular disks of different thickness with the inner radius clamped to the driving arbor and the outer radius free. The results of these experiments are presented with an emphasis on recording the effects of geometric nonlinearities on lateral frequency response. In a companion paper (Khorasany and Hutton, 2010, “Vibration Characteristics of Rotating Thin Disks—Part II: Analytical Predictions,” ASME J. Mech., 79(4), p. 041007), analytical predictions of such disk behavior are presented and compared with the experimental results obtained in this study. The experimental results show that in the case where significant disk displacements are induced by a lateral force, the frequency characteristics are significantly influenced by the magnitude of forced displacements.


2011 ◽  
Vol 675-677 ◽  
pp. 999-1002 ◽  
Author(s):  
Xiao Cong He

Self-pierce riveting (SPR) technology offers an alternative to resistance spot welding (RSW) for joining sheet materials. It has been found that the SPR technology produced a much stronger joint than the RSW in fatigue test. For efficient design of SPR structures, the knowledge of dynamic characteristics of the SPR beams is essential. In this paper, the free transverse vibration characteristics of single lap-jointed cantilevered SPR beams are investigated in detail. The focus of the analysis is to reveal the influence on the natural frequency and natural frequency ratio of these beams caused by variations in the material properties of sheet materials to be jointed. It is shown that the transverse natural frequencies of single lap jointed cantilevered SPR beams increase significantly as the Young’s modulus of the sheet materials increases, but change slightly corresponding to the change in Poisson’s ratio. It is also found that the material density of the sheets have significant effects on the free transverse vibration characteristics of the beams.


2012 ◽  
Vol 253-255 ◽  
pp. 2102-2106 ◽  
Author(s):  
Xu Juan Yang ◽  
Zong Hua Wu ◽  
Zhao Jun Li ◽  
Gan Wei Cai

A torsional vibration model of the slewing mechanism of a hydraulic excavator is developed to predict its free vibration characteristics with consideration of many fundamental factors, such as the mesh stiffness of gear pairs, the coupling relationship of a two stage planetary gear trains and the variety of moment of inertia of the input end caused by the motion of work equipment. The natural frequencies are solved using the corresponding eigenvalue problem. Taking the moment of inertia of the input end for example to illustrate the relationship between the natural frequencies of the slewing mechanism and its parameters, based on the simulation results, just the first order frequency varies significantly with the moment of inertia of the input end of the slewing mechanism.


2015 ◽  
Vol 752-753 ◽  
pp. 839-844
Author(s):  
R.M.S. Zetty ◽  
B.A. Aminudin ◽  
L.M. Aung ◽  
M.K. Khalid ◽  
H.M.Y. Norfazrina ◽  
...  

A modeling through sensitivity analysis is one of the promising methods to investigate the dynamic characteristics of complex mechanical parts. This study aimed to investigate the effect of sensitivity based on mass and stiffness modification in automobile crankshaft as a function of natural frequency. Verification for the crankshaft model that is used in the experiment and simulation was done and both results showed good agreement and small errors percentage. The modification was also done by reducing the different percentage of crankshaft’s mass and stiffness. Partial differential analysis was used in the sensitivity analysis in order to figure out the natural frequency after every set of modification. According to the results, we also found that there were changes of sensitivity value by changes in mass value but the stiffness value remains unchanged. However, there is no significant effect of stiffness reduction on vibration was found in this research.


Sign in / Sign up

Export Citation Format

Share Document