A High-Performance Full Adder Circuit Based on a Novel 7-T XOR-XNOR Cell
A high performance full adder circuit with full voltage-swing based on a novel 7-transistor xor-xnor cell is proposed in this paper. In our design, we exploit a novel 7-transistor xor-xnor circuit with a signal level restorer in a feedback path to settle the threshold voltage loss problem. Then we present a new high-performance 1-bit full adder based on the designed xor-xnor cell, pass-transistors and transmission gates. The simulation results prove that, compared with other designs in literature, the proposed full adder shows its superiority for less power dissipation, lower critical path delay and smaller power-delay product, and still provides full voltage swing in all nodes of the circuit.