Asymptotic Behavior of Global Solutions for some Nonlinear Wave Equation

2014 ◽  
Vol 638-640 ◽  
pp. 1691-1694
Author(s):  
Yong Xian Yan

In this paper we study the asymptotic behavior of the global solutions to the initial-boundary value problem of the nonlinear wave equation with damping term by applying a difference inequality.

2002 ◽  
Vol 2 (2) ◽  
pp. 105-108 ◽  
Author(s):  
Abbes Benaissa ◽  
Salim A. Messaoudi

We establish a blowup result to an initial boundary value problem for the nonlinear wave equationutt−M(‖B1/2u‖ 2) Bu+kut=|u| p−2,x∈Ω,t>0.


2013 ◽  
Vol 411-414 ◽  
pp. 1419-1422
Author(s):  
Wan Zhen Zhu ◽  
Yao Jun Ye

In this paper the asymptotic stability of global solutions to the initial-boundary value problem for some nonlinear wave equation with nonlinear damping and source terms is studied by using a difference ineauality.


2014 ◽  
Vol 638-640 ◽  
pp. 1700-1704
Author(s):  
Yue Hu

In this paper, we consider the existence of global solution to the initial-boundary value problem for some hyperbolic equation with P-Laplace operator and a nonlinear dissipative term using the compactness criteria and the monotone mapping’s method.


2008 ◽  
Vol 41 (1) ◽  
Author(s):  
Nguyen Thanh Long ◽  
Vo Giang Giai ◽  
Le Xuan Truong

AbstractWe study the initial-boundary value problem for a nonlinear wave equation given by


Sign in / Sign up

Export Citation Format

Share Document