Effects of Al Addition on the Microstructure of Fe-Mn-Si Ultra-Fine Grain Steel Welded Heat Affected Zone

2011 ◽  
Vol 299-300 ◽  
pp. 372-375
Author(s):  
Jin Gang Qi ◽  
Dong Jun Zhang ◽  
Zuo Fu Zhao ◽  
Shan Dai ◽  
Xiao Chen Liu

In order to improve toughness of the weld heat affected zone (HAZ) of ultra-fine grained (UFG) steel, a thermal simulation procedure of Fe-Mn-Si UFG steels with different Al addition was conducted and the corresponding microstructure was characterized and investigated. The results indicate that the maximum value on driving force of nucleation is ultra-fine grain steel with wtAl=0.6%, it has been explained in Nucleation kinetics that the grains are fine in UFG2. On the other hand, the bainite ferrite growth orientation has been increased. The toughness was remarkably enhanced in the steel welded heat affected zone. The formation of strie retained austenite and grain refinement of bainite ferrite in Fe-Mn-Si UFG steels with Al additions results in the increasing toughness of weld HAZ.

2021 ◽  
Vol 83 (4) ◽  
Author(s):  
S. Adam Soule ◽  
Michael Zoeller ◽  
Carolyn Parcheta

AbstractHawaiian and other ocean island lava flows that reach the coastline can deposit significant volumes of lava in submarine deltas. The catastrophic collapse of these deltas represents one of the most significant, but least predictable, volcanic hazards at ocean islands. The volume of lava deposited below sea level in delta-forming eruptions and the mechanisms of delta construction and destruction are rarely documented. Here, we report on bathymetric surveys and ROV observations following the Kīlauea 2018 eruption that, along with a comparison to the deltas formed at Pu‘u ‘Ō‘ō over the past decade, provide new insight into delta formation. Bathymetric differencing reveals that the 2018 deltas contain more than half of the total volume of lava erupted. In addition, we find that the 2018 deltas are comprised largely of coarse-grained volcanic breccias and intact lava flows, which contrast with those at Pu‘u ‘Ō‘ō that contain a large fraction of fine-grained hyaloclastite. We attribute this difference to less efficient fragmentation of the 2018 ‘a‘ā flows leading to fragmentation by collapse rather than hydrovolcanic explosion. We suggest a mechanistic model where the characteristic grain size influences the form and stability of the delta with fine grain size deltas (Pu‘u ‘Ō‘ō) experiencing larger landslides with greater run-out supported by increased pore pressure and with coarse grain size deltas (Kīlauea 2018) experiencing smaller landslides that quickly stop as the pore pressure rapidly dissipates. This difference, if validated for other lava deltas, would provide a means to assess potential delta stability in future eruptions.


2007 ◽  
Vol 539-543 ◽  
pp. 4063-4068 ◽  
Author(s):  
Hideki Hamatani ◽  
Yasunobu Miyazaki ◽  
Tadayuki Otani ◽  
Shigeru Ohkita

Ultra-fine grained steel (UFGS) with an average grain size of less than 1μm has been developed and is expected to demonstrate superior properties. However, its welded heat-affected zone, HAZ, substantially affecting the strength of a welded joint, will be easily softened after welding. Therefore, minimization of UFGS’s HAZ size during laser welding was carried out using the cooling conductor liquid nitrogen. It was found that a shielding gas with adequate flow rate for the liquid nitrogen depth was used to displace nitrogen on the area of laser beam irradiation to stabilize the weld bead. Also, because YAG laser system was mainly used because it has a lower laser induced plasma or plume temperature, which results in a decreased occurrence of pit and blowhole. HAZ size minimization strongly depends on the initial plate temperature. Reduced initial plate temperature shrinks the specific heated temperature range in which softening occurs. However, due possibly to decreasing thermal conductivity under room temperature, which prevents heat removal, the benefit of reducing the initial plate temperature is limited. The optimal initial temperature to minimize the HAZ size, in the present work, was found to be 123K.


2017 ◽  
Vol 83 (1) ◽  
pp. 75-90 ◽  
Author(s):  
Peter M. Yaworsky ◽  
Brian F. Codding

Explaining how and why populations settle a new landscape is central to many questions in American archaeology. Recent advances in settlement research have adopted predictions from the Ideal Free Distribution model (IFD). While tests of IFD predictions to date rely either on archaeologically derived coarse-grained diachronic data or ethnographically derived fine-grained synchronic data, here we provide the first test using historically derived data that is both fine-grained and diachronic. Fine-grain diachronic data allow us to test model predictions at a temporal scale in line with human settlement decisions and to validate proxies for application in archaeological contexts. To test model predictions pertaining to the relationship between population density and habitat quality, we use data from the historical settlement of Utah. The results demonstrate a negative relationship between population density and the quality of habitats occupied. These results are consistent with IFD predictions, suggesting that Euro-American settlement of Utah resulted from individuals attempting to maximize individual returns via agricultural productivity. Our results provide a quantitative and testable explanation for population dispersion over time and explain the spatial distribution of population density today. The results support predictions derived from a general theory of behavior, providing an explanatory framework for colonization events worldwide.


Author(s):  
ISABEL GARCIA-CONTRERAS ◽  
JOSÉ F. MORALES ◽  
MANUEL V. HERMENEGILDO

Abstract Context-sensitive global analysis of large code bases can be expensive, which can make its use impractical during software development. However, there are many situations in which modifications are small and isolated within a few components, and it is desirable to reuse as much as possible previous analysis results. This has been achieved to date through incremental global analysis fixpoint algorithms that achieve cost reductions at fine levels of granularity, such as changes in program lines. However, these fine-grained techniques are neither directly applicable to modular programs nor are they designed to take advantage of modular structures. This paper describes, implements, and evaluates an algorithm that performs efficient context-sensitive analysis incrementally on modular partitions of programs. The experimental results show that the proposed modular algorithm shows significant improvements, in both time and memory consumption, when compared to existing non-modular, fine-grain incremental analysis techniques. Furthermore, thanks to the proposed intermodular propagation of analysis information, our algorithm also outperforms traditional modular analysis even when analyzing from scratch.


2007 ◽  
Vol 558-559 ◽  
pp. 777-780 ◽  
Author(s):  
Taiki Morishige ◽  
Masato Tsujikawa ◽  
Sung Wook Chung ◽  
Sachio Oki ◽  
Kenji Higashi

Friction stir processing (FSP) is the effective method of the grain refinement for light metals. The aim of this study is to acquire the fine grained bulk Mg-Y-Zn alloy by ingot metallurgy route much lower in cost. Such bulk alloy can be formed by the superplastic forging. The microstructure of as-cast Mg-Y-Zn alloy was dendrite. The dendrite arm spacing was 72.5 [(m], and there are the lamellar structures in it. FSP was conducted on allover the plate of Mg-Y-Zn alloy for both surfaces by the rotational tool with FSW machine. The stirring passes were shifted half of the probe diameter every execution. The dendrite structures disappeared after FSP, but the lamellar structure could be observed by TEM. The matrix became recrystallized fine grain, and interdendritic second phase particles were dispersed in the grain boundaries. By using FSP, cast Mg-Y-Zn alloy could have fine-grained. This result compared to this material produced by equal channel angular extrusion (ECAE) or rapid-solidified powder metallurgy (RS P/M). As the result, as-FSPed material has the higher hardness than materials produced by the other processes at the similar grain size.


2010 ◽  
Vol 89-91 ◽  
pp. 41-46 ◽  
Author(s):  
Maki Ashida ◽  
Takashi Hamachiyo ◽  
Kazuhiro Hasezaki ◽  
Hirotaka Matsunoshita ◽  
Z. Horita

A Bi2Te3-based thermoelectric semiconductor was subjected by high pressure torsion (HPT). Sample disks of p-type Bi0.5Sb1.5Te3.0 were cut from sintered compacts that were made by mechanically alloying (MA) followed by hot pressing. Disks were subjected by HPT with 1, 5 and 10 turns at 473 K under 6.0 GPa of pressure. Crystal orientation was investigated by X-ray diffraction. Microstructures were characterized using scanning electron microscopy. Results indicated that HPT disks after 5 turns had a preferred orientation and a fine grain compared with pre-HPT disks while the orientation factor was decreased after HPT using 10 turns. The power factor had a maximum value at 5 turns as determined by measuring its thermoelectric properties. A maximum power factor of 4.30×10-3 Wm-1K-2 was obtained for HPT disks after 5 turns. This value was larger than that for the pre-HPT disk. The over-HPT of 10 turns was found to have caused a decrease in the preferred orientation leading to a low power factor.


Author(s):  
N. Yoneyama ◽  
K. Kubushiro ◽  
H. Yoshizawa

9Cr steel weldments are concerned with evaluation of creep life time and creep rupture mechanism. In fine grain HAZ (FG-HAZ) of weldments, TYPE IV cracking and creep voids occurred at lower stress than rupture stress level of base metal. In the crept specimen, FG-HAZ sometime has large coarsening grains near creep voids. These recovery phenomena are localized in FG-HAZ, and recovered microstructures are dependent on heat input of welding. In this study, creep tests are examined in two types of weldments, and relations between creep life time and coarsened sub-grains or grains have been studied by microstructural changing with EBSP analysis. In crept specimens, boundaries are moved and boundary density is decreasing in the fine-grained HAZ. Maximum grain size and creep life time have linear function, and EBSP can evaluate creep life time of 9Cr weldments. These microstructural changing are considered by morphology of precipitates in the several crept specimens.


1982 ◽  
Vol 4 (4) ◽  
pp. 211-221 ◽  
Author(s):  
S. White

The aim of this article is to extract from the existing literature a consistent nomenclature that can be used in the description of coherent fault rocks. The nomenclature is dealt with in this paper. Typical microstructures illustrating each is presented in a later paper (White et al ., 1982). It will be shown that a simple set of nomenclature can be extracted from the literature, so long as genetic connotations are kept to a minimum. The sequence, with increasing shear strain is country rock–protomylonite–blastomylonite–mylonite–ultramylonite if the rock has a well developed foliation; country rock–protocataclasite–cataclasite–ultracataclasite if it is without a foliation.It is emphasized that a mylonite is basically a fine-grained schist that has formed within fault zones. It is the association with faulting that distinguishes a mylonite from a fine grain schist.


Sign in / Sign up

Export Citation Format

Share Document