Effect of Milling Process and Calcination Temperature on the Properties of BSCF-SDC Composite Cathode
The ionic conductivity, super conductivity, ferroelectricity, and magnetic resistance of barium strontium cobalt ferrite (BSCF) make it a good solid cathode material. This study aims to investigate the influence of milling process and calcination temperature on the behaviour of nanocomposite cathode BSCF–samarium-doped ceria (SDC). The BSCF–SDC composite powders were mixed using two milling processes, namely, wet milling and dry milling. The composite cathode powders were mixed through wet milling by high-energy ball milling at 550 rpm for 2 hours. For dry milling, the powders were milled at 150 rpm for 30 minutes. The powders then underwent calcination at 900 °C, 950 °C, 1050 °C, and 1150 °C for 2 hours. The composite cathodes were examined on the basis of phase and microstructure through field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD), respectively. In conclusion, the selection of suitable milling process and calcination temperature is important in eliminating secondary phases in BSCF–SDC composite cathodes and in enhancing their properties.