Mechanical Properties of Porous Titanium Compacts Reinforced by UHMWPE

2007 ◽  
Vol 539-543 ◽  
pp. 1033-1037 ◽  
Author(s):  
Naoyuki Nomura ◽  
Y. Baba ◽  
A. Kawamura ◽  
S. Fujinuma ◽  
Akihiko Chiba ◽  
...  

Porous Ti compacts reinforced by ultra-high molecular weight polyethylene (UHMWPE) were fabricated and their mechanical properties were evaluated. Ti powder atomized by plasma rotating electrode process (PREP) was sintered at temperatures ranging from 1473 K to 1673 K for 7.2 ks in a vacuum. The porous Ti compacts contain the porosity of about 40%, irrespective of the sintering temperature. Porous Ti/UHMWPE composites were successfully fabricated by compressing UHMWPE powder into the porous Ti compacts. The compacts exhibit open pore structure and enables the penetration of UHMWPE into pores in the compacts. Young’s modulus of the composites is higher than that of the porous Ti compacts. The increment in Young’s modulus is not simply explained by the rule of mixture because Young’s modulus of the UHMWPE is approximately 1.3 GPa. Three-point bending strength of the composites is improved, presumably due to the local stress relief by UHMWPE in the vicinity of neck in the composites.

2011 ◽  
Vol 217-218 ◽  
pp. 1191-1196
Author(s):  
Peng Zhang ◽  
Yuan Chen Qi ◽  
Wei Li

Porous titanium compacts were fabricated by powder metallurgy using cold isostatic press with and without pore forming agents. Their microstructure and mechanical properties were investigated in this study. These alloy powders were sintered under 1300°C in vacuum of 10-3 Pa for 2h, followed by furnace cooling. Young’s modulus of sintered Ti could equal that of human’s dense bones. It was found that the strength of porous Ti enhanced by increasing the pressure or decreasing the amounts of pore forming agents. We prepared a porous pure Ti with 30wt.% NH4HCO3 as pore forming agents whose modulus was near to the human cortical bone, as compared in the range from 10 to 30GPa of Young’s modulus for human bone.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3127
Author(s):  
Feng Dai ◽  
Dandan Zhao ◽  
Lin Zhang

The effect of vacancy defects on the structure and mechanical properties of semiconductor silicon materials is of great significance to the development of novel microelectronic materials and the processes of semiconductor sensors. In this paper, molecular dynamics is used to simulate the atomic packing structure, local stress evolution and mechanical properties of a perfect lattice and silicon crystal with a single vacancy defect on heating. In addition, their influences on the change in Young’s modulus are also analyzed. The atomic simulations show that in the lower temperature range, the existence of vacancy defects reduces the Young’s modulus of the silicon lattice. With the increase in temperature, the local stress distribution of the atoms in the lattice changes due to the migration of the vacancy. At high temperatures, the Young’s modulus of the silicon lattice changes in anisotropic patterns. For the lattice with the vacancy, when the temperature is higher than 1500 K, the number and degree of distortion in the lattice increase significantly, the obvious single vacancy and its adjacent atoms contracting inward structure disappears and the defects in the lattice present complex patterns. By applying uniaxial tensile force, it can be found that the temperature has a significant effect on the elasticity–plasticity behaviors of the Si lattice with the vacancy.


2009 ◽  
Vol 631-632 ◽  
pp. 199-204 ◽  
Author(s):  
Yoshimi Watanabe ◽  
Yoshimi Iwasa ◽  
Hisashi Sato ◽  
Akira Teramoto ◽  
Koji Abe

Ti and Ti alloys are widely used as metallic implants, because of their good mechanical properties and nontoxic behavior. However, they have problems as the implant-materials, namely, high Young’s modulus comparing that of bone and low bonding ability with bone. There is a need to develop the Ti and Ti alloys with lower Young’s modulus and good bonding ability. In previous study, Ti composite containing biodegradable poly-L-lactic-acid (PLLA) fiber has been fabricated to improve these problems. However, this composite has low strength because of the imperfect sintering of Ti matrix. To improve its strength, sintering of Ti matrix should be completed. In this study, Ti-NaCl composite material was fabricated by spark plasma sintering (SPS) method using powder mixture of Ti and NaCl to complete the sintering of Ti matrix. To obtain porous Ti samples, Ti-NaCl composite were put into hot water of 100 oC. The porous Ti was dipped into PLLA melt in order to introduce PLLA into the pores of porous Ti. Finally, Ti-PLLA composite was obtained, and PLLA plays a role as reinforcement of Ti matrix. It was found that the Ti-PLLA composite has gradient structure and mechanical properties.


2017 ◽  
Vol 46 (8) ◽  
pp. 2041-2048 ◽  
Author(s):  
Xu Guangsheng ◽  
Kou Hongchao ◽  
Liu Xianghong ◽  
Li Fuping ◽  
Li Jinshan ◽  
...  

2020 ◽  
Vol 321 ◽  
pp. 13004
Author(s):  
Yasuhiko Goto ◽  
Yosuke Inoue ◽  
Hideki Fujii ◽  
Matsuhide Horikawa

To respond to the requirements for porous Ti sheet with the balanced properties of high porosity and good mechanical properties, and to optimize the manufacturing conditions of the simple powder-filling plus sintering process, effects of sintering temperatures on density and bending strength in porous Ti sheet were investigated. The optimum sintering condition was 900-950 °C for 1h to obtain porous Ti sheet with the balanced density ratio (around 40%) and high bending strength. The polyhedron shape of HDH powders contributed to those balanced properties, in which localized sintering raised bending strength with keeping high porosity (low density). Using the optimum manufacturing conditions, large sized porous Ti sheet of 400 × 800 × 0.5 mm was successfully manufactured.


2007 ◽  
Vol 1063 ◽  
Author(s):  
Steven Fox ◽  
Inessa Stanishevskaya ◽  
Shafiul Chowdhury ◽  
Shane Catledge ◽  
Andrei Stanishevsky

ABSTRACTBone consists of up to 70% mostly nanocrystalline hydroxyapatite (HA), and the rest is mostly collagen. One can suggest that synthetic nanoHA/collagen composites could potentially be the closest materials to resemble the bone microarchitecture and prepare resorbable bone substitutes and scaffolds. However, the data on the mechanical properties and property/structure relationships of HA/collagen composites are still scarce. It can be explained, in part, by the high cost of collagen and substantial amounts of materials needed for many tests. However, gelatin is cheap, has many properties similar to collagen, and can be used as a model material for the mechanical testing of HA-based composites. In this study, we report the results of an investigation of some mechanical properties of HA/gelatin composites with 0 to 80% HA nanoparticle (size 15-60 nm) loading by weight. The HA nanoparticle dispersions were mixed with gelatin in trifluoroethanol or in water in different ratios and placed in Teflon molds to produce the sheets with the thickness in the range of 0.4 – 1.0 mm. Nanoindentation technique was used to determine the Young's modulus and hardness. Bending tests were performed using dynamic mechanical analysis with the amplitudes in the 1 – 50 micron range at 1 Hz. The values of Young's modulus (1 – 20 GPa), hardness (70 – 500 MPa) and bending modulus (0.3 – 2.4 GPa) were obtained. The highest values of the Young's modulus and hardness of these composite materials were achieved for 40% – 60% HA content by weight, which was close to the values for similar HA/collagen composites. However, the maximum bending strength was observed for 20 – 35% HA content. We discuss further the observed trends of the mechanical properties and their dependence on other factors such as the test conditions, sample geometry, and HA particle size.


2006 ◽  
Vol 510-511 ◽  
pp. 758-761 ◽  
Author(s):  
Hyeong Ho Jin ◽  
Sang Ho Min ◽  
Kyu Hong Hwang ◽  
Ik Min Park ◽  
Hong Chae Park ◽  
...  

Biodegradable β-tricalcium phosphate (β-TCP)/poly (lactide-co-glycolide) (PLGA) composites were synthesized by in situ polymerization with microwave energy. The influence of the β-TCP content in β-TCP/PLGA composites on the molecular weight, crystallinity, microstructure, and mechanical properties was investigated. As the molecular weight of composites decreased, the β-TCP content increased up to 10 wt%, while further raising of the β-TCP content above 10%, the molecular weight increased with increasing β-TCP content. This behavior may be ascribed to the superheating effect or nonthermal effect induced by microwave energy. It was found that the bending strength and Young’s modulus of the β-TCP/PLGA composites were proportional to the molecular weight of PLGA. The bending strength of the β-TCP/PLGA composites ranged from 18 to 38 MPa, while Young’s modulus was in the range from 2 to 6 GPa.


2020 ◽  
Vol 321 ◽  
pp. 05004
Author(s):  
Masato Ueda ◽  
Masahiko Ikeda

Mechanical properties of metallic materials can be controlled by not only alloy design but also constructing appropriate structure. A porous material with adequate pore structure showing appropriate mechanical properties has long been sought as the ideal bone substitute, because it exhibits low Young’s modulus and bone ingrowth. Additive manufacturing (AM) can produce metallic tailor-made products such as artificial bone, several joints etc. The purpose of this work was to control the mechanical property of porous Ti by controlling the porous structure. In addition, the characteristics of Ti-Zr-Fe alloys were also investigated as the materials for the AM. First, porous polylactic acid with rhombicuboctahedron-derived structure was prepared by a 3D printer to determine appropriated structure for bone substitutes. The compressive strength and Young’s modulus was strongly influenced by the minimum cross-sectional area fraction perpendicular to the loading direction. Then the porous Ti with similar structures were prepared by a laser AM. The strength and Young’s modulus were extremely low compared with the expected ones. Then Ti-xmass%Zr-1mass%Fe alloys (x=0, 5, 10) were prepared as the materials for the AM. Vickers hardness increased almost linearly with Zr content by solution hardening. Ideal bone substitutes would be produced by such structural design and alloying.


Author(s):  
Bijan Golkhani ◽  
Anna Weber ◽  
Ludger Keilig ◽  
Susanne Reimann ◽  
Christoph Bourauel

Abstract Objective Investigate and compare the mechanical properties of different aligner materials before and after deep drawing and determine differences in the mechanical properties after thermoforming. Materials and methods Four aligner film sheets from three manufacturers (Duran Plus® [Scheu Dental, Iserlohn, Germany]; Zendura® [ClearCorrect, Bay Materials LLC, Fremont, CA, USA]; Essix ACE® and Essix® PLUS™ [Dentsply Sirona Deutschland, Bensheim, Germany]) were tested in 3‑point bending with support distances of 8, 16, and 24 mm. Dimension of the specimens was 10 × 50 mm2. Two groups each were tested: (1) 10 specimens were investigated in the as-received state (before thermoforming), (2) 10 specimens were deep drawn on a master plate with cuboids of the dimension 10 × 10 × 50 mm3. Then, specimens were cut out of the upper side and lateral walls and were measured in 3‑point bending. Forces and reduction in thickness were measured and corrected theoretical forces of drawn sheets after thickness reduction as well as Young’s modulus were calculated. Results At a support distance of 8 mm and a displacement of 0.25 mm Essix® PLUS™, having the highest thickness in untreated state, showed highest forces of 28.2 N, followed by Duran Plus® (27.3 N), Essix ACE® (21.0 N) and Zendura® (19.7 N). Similar results were registered for the other distances (16, 24 mm). Thermoforming drastically reduced thickness and forces in the bending tests. Forces decreased to around 10% or less for specimens cut from the lateral walls. Young’s modulus decreased significantly for deep drawn foil sheets, especially for Essix® PLUS™. Conclusions Three-point bending is an appropriate method to compare different foil sheet materials. Young’s modulus is significantly affected by thermoforming.


2005 ◽  
Vol 288-289 ◽  
pp. 611-614 ◽  
Author(s):  
Hu Li ◽  
Hong Song Fan ◽  
Xing Dong Zhang

Porous titanium with good strength and three-dimension pore structure was fabricated by using H2O2 as vesicant foaming titanium powder. The compressive strength, bending strength and Young’s modulus of porous titanium with the porosity of 58vol% are 190.7Mpa, 159Mpa and 4.15Gpa, respectively, similar to that of the nature bone. This kind of porous titanium with good bio-mechanical compatibility may be potential to alleviate the problems caused by the mismatch of the strength and Young's modulus between implant (110 GPa for Ti) and bone. Moreover, the pores (mainly in 100-700µm) are all interconnected and there are many microspores (about 10µm) in the wall of the macrospores. This porous structure would endow the materials with better activity.


Sign in / Sign up

Export Citation Format

Share Document