Resistive Switching Characteristics of Cu/SiO2/Pt Structure

2011 ◽  
Vol 687 ◽  
pp. 167-173 ◽  
Author(s):  
Chih Yi Liu ◽  
Po Wei Sung ◽  
Chun Hung Lai ◽  
Hung Yu Wang

SiO2thin films were fabricated as resistive layers of Cu/SiO2/Pt devices to investigate resistive switching properties. A thermal annealing was performed to allow for the diffusion of Cu ions into the SiO2thin films, leading to the formation of Cu-doped SiO2layers. Occurrence probabilities of the resistive switching and initial resistance-states of the devices were influenced by SiO2thickness, which was dependent on the Cu diffusion status within the SiO2layer. The resistive switching behaviors were characterized by the voltage sweeping mode and the current sweeping mode. The current sweeping mode provided a desired compliance current to well control the resistive switching from the high resistance-state to the low resistance-state (SET). Therefore, the large RESET (from the low resistance-state to the high resistance-state) current was not inherent in the device, due to poor control of the compliance current by the voltage sweeping mode. The current sweeping mode is a simple method to characterize the RESET current.

2015 ◽  
Vol 08 (01) ◽  
pp. 1550001 ◽  
Author(s):  
Bai Sun ◽  
Qiling Li ◽  
Yonghong Liu ◽  
Peng Chen

Multiferroic BiCoO 3 nanoflowers were synthesized by a hydrothermal process. The BiCoO 3 nanoflowers show superior bipolar resistive switching characteristics. The typical current–voltage (I–V) characteristics of the Ag / BiCoO 3/ Ag structures exhibit an extreme change in resistance between high resistance state (HRS) or "OFF" state and low resistance state (LRS) or "ON" state with ON/OFF ratio ~ 105.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1124 ◽  
Author(s):  
Chao-Feng Liu ◽  
Xin-Gui Tang ◽  
Lun-Quan Wang ◽  
Hui Tang ◽  
Yan-Ping Jiang ◽  
...  

The resistive switching (RS) characteristics of flexible films deposited on mica substrates have rarely been reported upon, especially flexible HfO2 films. A novel flexible Au/HfO2/Pt/mica resistive random access memory device was prepared by a sol-gel process, and a Au/HfO2/Pt/Ti/SiO2/Si (100) device was also prepared for comparison. The HfO2 thin films were grown into the monoclinic phase by the proper annealing process at 700 °C, demonstrated by grazing-incidence X-ray diffraction patterns. The ratio of high/low resistance (off/on) reached 1000 and 50 for the two devices, respectively, being relatively stable for the former but not for the latter. The great difference in ratios for the two devices may have been caused by different concentrations of the oxygen defect obtained by the X-ray photoelectron spectroscopy spectra indicating composition and chemical state of the HfO2 thin films. The conduction mechanism was dominated by Ohm’s law in the low resistance state, while in high resistance state, Ohmic conduction, space charge limited conduction (SCLC), and trap-filled SCLC conducted together.


2020 ◽  
Author(s):  
Shanming Ke ◽  
Shangyu Luo ◽  
Jinhui Gong ◽  
Liwen Qiu ◽  
Renhong Liang ◽  
...  

Abstract The resistive switching (RS) mechanism of hybrid organic-inorganic perovskites is an open question until now. Here, a switchable diode-like RS behavior in MAPbBr3 single crystals using Au (or Pt) symmetric electrodes is reported. Both the high resistance state (HRS) and low resistance state (LRS) are electrode-area dependent and light responsive. We propose an electric-field-driven inner p-n junction accompanied by a trap-controlled SCLC conduction mechanism to explain this switchable diode-like RS behavior in MAPbBr3 single crystals.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 451
Author(s):  
Byeongjeong Kim ◽  
Chandreswar Mahata ◽  
Hojeong Ryu ◽  
Muhammad Ismail ◽  
Byung-Do Yang ◽  
...  

Resistive random-access memory (RRAM) devices are noticeable next generation memory devices. However, only few studies have been conducted regarding RRAM devices made of alloy. In this paper, we investigate the resistive switching behaviors of an Au/Ti/HfTiOx/p-Si memory device. The bipolar switching is characterized depending on compliance current under DC sweep mode. Good retention in the low-resistance state and high-resistance state is attained for nonvolatile memory and long-term memory in a synapse device. For practical switching operation, the pulse transient characteristics are studied for set and reset processes. Moreover, a synaptic weight change is achieved by a moderate pulse input for the potentiation and depression characteristics of the synaptic device. We reveal that the high-resistance state and low-resistance state are dominated by Schottky emissions.


2013 ◽  
Vol 1577 ◽  
Author(s):  
Rajesh K. Katiyar ◽  
Pankaj Misra ◽  
G. L Sharma ◽  
Gerardo Morell ◽  
J. F Scott ◽  
...  

ABSTRACTNonvolatile unipolar resistive switching has been observed in Sm doped BFO thin films in Pt/Sm: BFO/SRO stack geometry. The initial forming voltage was found to be ∼ 11 V. After the forming process repeatable switching of the resistance of Sm:BFO film was obtained between low and high resistance states with nearly constant resistance ratio ∼ 105 and non overlapping switching voltages in the range of 0.7-1 V and 4-6 V respectively. The temperature dependent measurements of the resistance of the device indicated metallic and semiconducting conduction behavior in low and high resistance states respectively. The current conduction mechanism of the Pt/Sm:BFO/SRO device in low resistance states was found to be dominated by the Ohmic behavior while in case of high resistance state and at high voltages it deviated significantly from normal Ohmic behavior and was found to correspond the Pool-Frankel (PF) emission. The Pt/Sm:BFO/SRO structure also showed efficient photo-response in high and low resistance states with increase in photocurrent which was significantly higher in low resistance state when illuminated with white light.


2020 ◽  
Vol 90 (10) ◽  
pp. 1741
Author(s):  
С.В. Тихов ◽  
В.Г. Шенгуров ◽  
С.А. Денисов ◽  
И.Н. Антонов ◽  
А.В. Круглов ◽  
...  

The self-assembled GeSi nanoislands built into the semiconductor-insulator interface of the MOS-structures based on Si(001) with SiOx and ZrO2(Y) oxide layers deposited by magnetron sputtering have been shown to initiate bipolar resistive switching without preliminary electroforming. The current-voltage curves and electrical parameters of the MOS-structures in the high-resistance state and in the low-resistance state have been studied. A change in the built-in charge in the dielectric near the insulator-semiconductor interface during resistive switching is established and associated with the formation and destruction of conductive filaments. The light-stimulated resistive switching of MOS-structures with ZrO2(Y) layer from the high-resistance to the low-resistance state is observed, which is associated with an increase in the conductivity of the space-charge region in the Si substrate due to interband optical absorption in Si, which causes a voltage redistribution between Si and ZrO2(Y) layer. A difference in the shape of the small signal photo-voltage spectra of MOS-structures is found in the spectral region of intrinsic photosensitivity of Si in the high and low resistance states due to the leakage of photo-excited charge carriers from Si to the metal electrode through filaments.


2007 ◽  
Vol 124-126 ◽  
pp. 603-606
Author(s):  
Sang Hee Won ◽  
Seung Hee Go ◽  
Jae Gab Lee

Simple process for the fabrication of Co/TiO2/Pt resistive random access memory, called ReRAM, has been developed by selective deposition of Co on micro-contact printed (μ-CP) self assembled monolayers (SAMs) patterns. Atomic Layer Deposition (ALD) was used to deposit TiO2 thin films, showing its ability of precise control over the thickness of TiO2, which is crucial to obtain proper resistive switching properties of TiO2 ReRAM. The fabrication process for Co/TiO2/Pt ReRAM involves the ALD of TiO2 on sputter-deposited Pt bottom electrode, followed by μ-CP with SAMs and then selective deposition of Co. This results in the Co/TiO2/Pt structure ReRAM. For comparison, Pt/TiO2/Pt ReRAM was produced and revealing the similar switching characteristics as that of Co/TiO2/Pt, thus indicating the feasibility of Co replacement with Pt top electrode. The ratios between the high-resistance state (Off state) and the low-resistance state (On state) were larger than 102. Consequently, the selective deposition of Co with μ-CP, newly developed in this study, can simplify the process and thus implemented into the fabrication of ReRAM.


2020 ◽  
Vol 20 (5) ◽  
pp. 3283-3286 ◽  
Author(s):  
Yuehua An ◽  
Xia Shen ◽  
Yuying Hao ◽  
Pengfei Guo ◽  
Weihua Tang

Conductive filament mechanism can explain major resistance switching behaviors. The forming/deforming of the filaments define the high/low resistance states. The ratio of high/low resistance depends on the characterization of the filaments. In many oxide systems, the oxygen vacancies are important to forming the conductive filaments for the resistance switching behaviors. As ultrawide band gap semiconductor, Ga2O3 has very high resistance for its high resistance state, while its low resistive state has relative high resistance, which normally results in low ratio of high/low resistance. In this letter, we report a high ratio of high/low resistance by ultraviolet radiation. The I–V characteristics of Au/Ti/β-Ga2O3/W sandwich structure device shows that the HRS to LRS ratio of 5 orders is achieved.


MRS Advances ◽  
2019 ◽  
Vol 4 (48) ◽  
pp. 2601-2607
Author(s):  
Toshiki Miyatani ◽  
Yusuke Nishi ◽  
Tsunenobu Kimoto

ABSTRACTImpacts of a forming process on bipolar resistive switching (RS) characteristics in Pt/TaOx/Ta2O5/Pt cells were investigated. We found that the forming resulted in a transition from an initial state to a particular high resistance state (HRS) in most of the Pt/TaOx/Ta2O5/Pt cells. Evaluation of electrical characteristics after the transition to the particular HRS revealed that two modes of bipolar RS with the conventional polarity based on valence change mechanism and with the opposite polarity could be selectively obtained by adjusting the magnitude of the applied voltage. Moreover, the cell resistance decreased gradually during set processes in the bipolar RS with the opposite polarity.


2015 ◽  
Vol 15 (10) ◽  
pp. 7569-7572 ◽  
Author(s):  
Sukhyung Park ◽  
Kyoungah Cho ◽  
Jungwoo Jung ◽  
Sangsig Kim

In this study, we demonstrate the enhancement of the nonlinear resistive switching characteristics of HfO2-based resistive random access memory (ReRAM) devices by carrying out thermal annealing of Al2O3 tunnel barriers. The nonlinearity of ReRAM device with an annealed Al2O3 tunnel barrier is determined to be 10.1, which is larger than that of the ReRAM device with an as-deposited Al2O3 tunnel barrier. From the electrical characteristics of the ReRAM devices with as-deposited and annealed Al2O3 tunnel barriers, it reveals that there is a trade-off relationship between nonlinearity in low-resistance state (LRS) current and the ratio of the high-resistance state (HRS) and the LRS. The enhancement of nonlinearity is attributed to a change in the conduction mechanism in the LRS of the ReRAM after the annealing. While the conduction mechanism before the annealing follows Ohmic conduction, the conduction of the ReRAM after the annealing is controlled by a trap-controlled space charge limited conduction mechanism. Additionally, the annealing of the Al2O3 tunnel barriers is also shown to improve the endurance and retention characteristics.


Sign in / Sign up

Export Citation Format

Share Document