Effects of Solid Solution Temperature on Microstructure and Properties of Extruded and Forged FGH95 Superalloys

2019 ◽  
Vol 944 ◽  
pp. 3-7
Author(s):  
Zi Chao Peng ◽  
Xu Qing Wang ◽  
Yang Zhang ◽  
Ye Fei Feng ◽  
Xiao Shuo Fan

the effects of solid solution temperature on microstructure and properties in extruded and forged FGH95 superalloys are studied in this work. The superalloys with different micrtstructures are prepared through solid solution heat treatment at different temperature, and the microstructures were analyzed by SEM and EBSD. The results show that following with the increase of solid solution temperature, the grain size increase and the amount of primary γ′-phase located at the grain boundary decrease. When the solid solution temperature is higher than the solvus, the primary γ′-phase disappear completely, and as a result, the grain size grow significantly. The orientation of the FGH95 superalloys would not be influenced by the solid solution temperature, but the amount of twins increases following with the increase of solid solution temperature. The tensile and creep property is also studied in this work, the results show that the sub-solid solution heat treatment is suitable for Extruded and Forged FGH95 superalloys.

2016 ◽  
Vol 61 (1) ◽  
pp. 425-432 ◽  
Author(s):  
T. Rzychoń ◽  
B. Dybowski

Magnesium alloys due the low density and good mechanical properties are mainly used in the automotive and aerospace industry. In recent years, magnesium alloys are extensively developed for use in high temperatures (above 120°C). Among these alloys, magnesium alloys containing tin and silicon have large possibilities of application due to the formation of thermally stable intermetallic Mg2Sn and Mg2Si. In this paper the influence of aluminum and heat treatment on the on the microstructure and hardness of Mg-7Sn-5Si alloy is reported. It was found that the microstructure of Mg-7Sn-5Si alloy consist of α-Mg solid solution, Mg2Sn and Mg2Si compounds. Addition of 2 wt% of Al to Mg-7Sn-5Si alloy causes the formation of Al2Sn phase. Moreover, Al dissolves in the α-Mg solid solution. The solution heat-treatment of tested alloys at 500°C for 24 h causes the dissolve the Mg2Sn phase in the α-Mg matrix and spheroidization of Mg2Si compound. The Mg2Si primary crystals are stable at solution temperature. After ageing treatment the precipitation process of equilibrium Mg2Sn phase was found in both alloys. The addition of aluminum has a positive effect on the hardness of Mg-7Sn-5Si alloy. In case of Mg-5Si-7Sn-2Al alloy the highest hardness was obtained for sample aged for 148 h at 250°C (88 HV2), while in case of Al-free alloy the highest hardness is 70 HV for material aged for 148 h at 250°C.


2013 ◽  
Vol 749 ◽  
pp. 282-286
Author(s):  
Xian Hui Wang ◽  
Xiao Chun Sun ◽  
Xiao Hong Yang ◽  
Shu Hua Liang

The effect of heat treatment on the microstructure and properties of Cu-3Ti-1Al alloy was investigated. The microstructure was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), and the hardness and electrical conductivity were tested as well. The results showed that the hardness and electrical conductivity of Cu-3Ti-1Al alloy increased significantly after solid solution and ageing treatment. The strengthening effect of Cu-3Ti-1Al alloy was attributed to the formation of intermetallic phase such as Ti3Al and fine precipitates of coherent β-Cu4Ti. With increase of the aging time and the temperature, the precipitates became coarse and incoherent with Cu matrix, and the discontinuous precipitate β started to grow from grain boundaries toward grain interior, which decreased hardness. As the formation of Ti3Al, β-Cu3Ti and β-Cu4Ti phase can efficiently reduce Ti concentration in Cu matrix. The electrical conductivity of Cu-3Ti-1Al alloy increases. In the range of experiments, the optimal heat treatment process for Cu-3Ti-1Al alloy is solid solution at 850°C for 4h and ageing 500°C for 2h, and the hardness and electrical conductivity are 227HV and 12.3%IACS, respectively.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 266
Author(s):  
Wakshum M. Tucho ◽  
Vidar Hansen

The widely adopted temperature for solid solution heat treatment (ST) for the conventionally fabricated Inconel 718 is 1100 °C for a hold time of 1 h or less. This ST scheme is, however, not enough to dissolve Laves and annihilate dislocations completely in samples fabricated with Laser metal powder bed fusion (L-PBF) additive manufacturing (AM)-Inconel 718. Despite this, the highest hardness obtained after aging for ST temperatures (970–1250 °C) is at 1100 °C/1 as we have ascertained in our previous studies. The unreleased residual stresses in the retained lattice defects potentially affect other properties of the material. Hence, this work aims to investigate if a longer hold time of ST at 1100 °C will lead to complete recrystallization while maintaining the hardness after aging or not. For this study, L-PBF-Inconel 718 samples were ST at 1100 °C at various hold times (1, 3, 6, 9, 16, or 24 h) and aged to study the effects on microstructure and hardness. In addition, a sample was directly aged to study the effects of bypassing ST. The samples (ST and aged) gain hardness by 43–49%. The high density of annealing twins evolved during 3 h of ST and only slightly varies for longer ST.


2019 ◽  
Vol 38 (2019) ◽  
pp. 892-896 ◽  
Author(s):  
Süleyman Tekeli ◽  
Ijlal Simsek ◽  
Dogan Simsek ◽  
Dursun Ozyurek

AbstractIn this study, the effect of solid solution temperature on microstructure and mechanical properties of the AA7075 alloy after T6 heat treatment was investigated. Following solid solution at five different temperatures for 2 hours, the AA7075 alloy was quenched and then artificially aged at 120∘C for 24 hours. Hardness measurements, microstructure examinations (SEM+EDS, XRD) and tensile tests were carried out for the alloys. The results showed that the increased solid solution temperature led to formation of precipitates in the microstructures and thus caused higher hardness and tensile strength.


2011 ◽  
Vol 214 ◽  
pp. 108-112 ◽  
Author(s):  
Prachya Peasura ◽  
Bovornchok Poopat

The Inconel X-750 indicates good hot corrosion resistance, high stability and strength at high temperatures and for this reason the alloy is used in manufacturing of gas turbine hot components. The objective of this research was study the effect of post weld heat treatment (PWHT) on fusion zone and heat affected zone microstructure and mechanical properties of Inconel X-750 weld. After welding, samples were solutionized at 1500 0C. Various aging temperature and times were studied. The results show that aging temperature and time during PWHT can greatly affect microstructure and hardness in fusion zone and heat affected zone. As high aging temperature was used, the grain size also increased and M23C6 at the grain boundary decreased. This can result in decreased of hardness. Moreover excessive aging temperature can result in increasing MC carbide intensity in parent phase (austenite). It can also be observed that M23C6 at the grain boundary decreased due to high aging temperature. This resulted in decreasing of hardness of weld metal and heat affected zone. Experimental results showed that the aging temperature 705 0C aging time of 24 hours provided smaller grain size, suitable size and intensity of MC carbide resulting in higher hardness both in weld metal and HAZ.


2013 ◽  
Vol 747-748 ◽  
pp. 158-165
Author(s):  
Juan Qu ◽  
Kui Zhang ◽  
Ming Long Ma ◽  
Yong Jun Li ◽  
Xing Gang Li

In this study, Mg-7Gd-5Y-1Nd-0.5Zr alloy (EW75) was produced by melting method and then press-forged into large size plate. The properties of the Mg-7Gd-5Y-1.2Nd-0.5Zr alloy were optimized through T6 heat treatment. The microstructures of alloy were observed by means of optical microscopy (OM), scanning electron microscopy (SEM). Its mechanical properties under different heat treatment conditions were determined by tensile tests. The results indicated that increasing the solid solution temperature and prolonging the solid solution time can both lead to the dissolution of second phase in the alloy back into the matrix. The solid solution temperature affects the dissolution process more than the solid solution time. Grain growth occurred during the solid solution process. The grain size of the matrix enlarges with the increase of solid solution temperature. The tensile test result showed that the tensile strength of the alloy was significantly improved after T6 heat treatment. Its tensile strength in the same direction was nearly 40% up after T6 heat treatment. The analysis shows that T6 heat treatment can effectively eliminate the larger deformed precipitates and beneficial to the formation of hard precipitates, which leads to an improvement in the alloys tensile strength.


2021 ◽  
Vol 1016 ◽  
pp. 125-131
Author(s):  
Masahiro Goto ◽  
T. Yamamoto ◽  
S.Z. Han ◽  
J. Kitamura ◽  
J.H. Ahn ◽  
...  

On the thermomechanical treatments of Cu-Ni-Si alloy, cold-rolling (CR) before solution heat treatment (SHT) is commonly conducted to eliminate defects in a casting slab. In addition, a rolling is applied to reduce/adjust the thickness of casting slab before SHT. In a heavily deformed microstructure by CR, on the other hand, grain growth during a heating in SHT is likely to occur as the result of recrystallization. In general, tensile strength and fatigue strength tend to decrease with an increase in the grain size. However, the effect of difference in grain sizes produced by with and without CR before SHT on the fatigue strength is unclear. In the present study, fatigue tests of Cu-6Ni-Si alloy smooth specimens with a grain fabricated through different thermomechanical processes were conducted. The fatigue behavior of Cu-Ni-Si alloy was discussed.


1985 ◽  
Vol 54 ◽  
Author(s):  
Albertus G. Dirks ◽  
Tien Tien ◽  
Janet M. Towner

ABSTRACTThe microstructure and properties of thin films depends strongly upon the alloy composition. A study was made of the metallurgical aspects of homogeneous Al alloy films, particularly the binary Al-Ti and the ternary Al-Ti-Si systems. Electrical resistivity, grain size morphology, second phase formation and electromigration have been studied as a function of the alloy composition and its heat treatment.


2010 ◽  
Vol 654-656 ◽  
pp. 623-626 ◽  
Author(s):  
Y.J. Wu ◽  
Li Ming Peng ◽  
X.Q. Zeng ◽  
D.L. Lin ◽  
W.J. Ding

The coherent fine-lamellae consisting of the 2H-Mg and the 14H-type long period stacking ordered (LPSO) structure within α'-Mg matrix have been observed in an as-cast Mg–Gd–Zn–Zr alloy. During subsequent solid solution heat treatment at 773 K, in addition to the lamellae within matrix, a novel lamellar X phase [Mg–(8.37±1.0)Zn–(11.32±1.0)Gd] with the 14H-type LPSO structure was transformed from the dendritical β phase. The 14H-type LPSO structure existing in Mg–Gd–Zn–Zr alloys derives from two variant ways: formation of the 14H-type LPSO structure comes from two variant means: i.e., the formation within matrix and the phase transformation from the β phase to the X phase in grain boundaries.


Sign in / Sign up

Export Citation Format

Share Document