hilbert polynomials
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 9)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Christopher Eur ◽  
Sung Hyun Lim

2020 ◽  
Vol 156 (9) ◽  
pp. 1873-1914
Author(s):  
Stephen Coughlan ◽  
Tom Ducat

Cluster algebras give rise to a class of Gorenstein rings which enjoy a large amount of symmetry. Concentrating on the rank 2 cases, we show how cluster varieties can be used to construct many interesting projective algebraic varieties. Our main application is then to construct hundreds of families of Fano 3-folds in codimensions 4 and 5. In particular, for Fano 3-folds in codimension 4 we construct at least one family for 187 of the 206 possible Hilbert polynomials contained in the Graded Ring Database.


2019 ◽  
Vol 106 (3-4) ◽  
pp. 423-428
Author(s):  
H. Saremi ◽  
A. Mafi

2019 ◽  
Vol 169 (2) ◽  
pp. 335-355
Author(s):  
KRITI GOEL ◽  
J. K. VERMA ◽  
VIVEK MUKUNDAN

AbstractLet (R, ) be an analytically unramified local ring of positive prime characteristic p. For an ideal I, let I* denote its tight closure. We introduce the tight Hilbert function $$H_I^*\left( n \right) = \Im \left( {R/\left( {{I^n}} \right)*} \right)$$ and the corresponding tight Hilbert polynomial $$P_I^*\left( n \right)$$, where I is an m-primary ideal. It is proved that F-rationality can be detected by the vanishing of the first coefficient of $$P_I^*\left( n \right)$$. We find the tight Hilbert polynomial of certain parameter ideals in hypersurface rings and Stanley-Reisner rings of simplicial complexes.


2019 ◽  
Vol 9 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Davide Alberelli ◽  
Paolo Lella

2019 ◽  
Vol 18 (03) ◽  
pp. 1950048
Author(s):  
Nguyen Tu Cuong ◽  
Pham Hung Quy ◽  
Hoang Le Truong

In this paper, we study the index of reducibility of powers of a standard parameter ideal. An explicit formula is proved for the extremal case. We apply the main result to compute Hilbert polynomials of socle ideals of standard parameter ideals.


2018 ◽  
Vol 10 (2) ◽  
pp. 303-312
Author(s):  
N.B. Ilash

We consider one of the fundamental problems of classical invariant theory, the research of Hilbert polynomials for an algebra of invariants of Lie group $SL_2$. Form of the Hilbert polynomials gives us important information about the structure of the algebra. Besides, the coefficients and the degree of the Hilbert polynomial play an important role in algebraic geometry. It is well known that the Hilbert function of the algebra $SL_n$-invariants is quasi-polynomial. The Cayley-Sylvester formula for calculation of values of the Hilbert function for algebra of covariants of binary $d$-form $\mathcal{C}_{d}= \mathbb{C}[V_d\oplus \mathbb{C}^2]_{SL_2}$ (here $V_d$ is the $d+1$-dimensional space of binary forms of degree $d$) was obtained by Sylvester. Then it was generalized to the algebra of joint invariants for $n$ binary forms. But the Cayley-Sylvester formula is not expressed in terms of polynomials.In our article we consider the problem of computing the Hilbert polynomials for the algebras of joint invariants and joint covariants of $n$ linear forms and $n$ quadratic forms. We express the Hilbert polynomials $\mathcal{H} \mathcal{I}^{(n)}_1,i)=\dim(\mathcal{C}^{(n)}_1)_i, \mathcal{H}(\mathcal{C}^{(n)}_1,i)=\dim(\mathcal{C}^{(n)}_1)_i,$ $\mathcal{H}(\mathcal{I}^{(n)}_2,i)=\dim(\mathcal{I}^{(n)}_2)_i, \mathcal{H}(\mathcal{C}^{(n)}_2,i)=\dim(\mathcal{C}^{(n)}_2)_i$ of those algebras in terms of quasi-polynomial. We also present them in the form of Narayana numbers and generalized hypergeometric series.


Sign in / Sign up

Export Citation Format

Share Document