scholarly journals Production of Activated Carbon from Carbonaceous Agricultural Waste Material: Coconut Fibres

2021 ◽  
Vol 40 (1) ◽  
pp. 19-24
Author(s):  
E.O. Ohimor ◽  
D.O. Temisa ◽  
P.I. Ononiwu

Activated carbon was produced from Cocos nucifera (coconut) fibers by carbonization and activation processes. The sample was first pretreated before carbonization and activation processes at 450°C and 700°C respectively in an electric furnace. Chemical activation using Potassium hydroxide (KOH) 4:1 (weight basis) was carried out to increase the activated carbon adsorption properties. The element contained in the sample was analyzed using the Energy Dispersive Spectroscopy (EDS) while the surface morphological composition was determined by Scanning Electron Microscope (SEM) and the chemical bonds present in the sample was characterized using Fourier transform infrared reflection (FT-IR). From the research carried out, the results show that activated carbon produced from coconut fibers would be useful and effective for adsorbent purposes, considering its large pores.

2021 ◽  
Vol 23 ◽  
Author(s):  
Adam Rosenblum

Activated carbon is a type of carbon that is a known catalyst for a variety of chemical reactions. Uses of activated carbon include purifying liquids and gases, food and beverage processing, odor removal, industrial pollution control, and numerous other applications. There are a variety of different activated carbons, with most being derived from coal, peat, and wood. Activated carbon is a catalyst because the small pores of the carbon increase the surface area available for adsorption or chemical reactions. One primary use of activated carbon is how it adsorbs nitrates onto its surface. This paper delves into different adsorption rates of an activated carbon (Filtrasorb 600) that is treated with different chemicals and then subjected to a chemical activation at a constant pressure under different gaseous conditions. Data collected during experiments indicate there are significant interactions between surface functional groups and nitrate.             Keywords: activated carbon, adsorption, nitrates


2018 ◽  
Vol 154 ◽  
pp. 01021 ◽  
Author(s):  
Achmad Chafidz ◽  
Widi Astuti ◽  
Dhoni Hartanto ◽  
Aulia Septiani Mutia ◽  
Purtiah Rantau Sari

The exhaust gas or emission from motor vehicle contains various pollutants and some of them are toxic and very harmful for human health. In the present work, we prepared an activated carbon to reduce the toxic pollutants (via adsorption process) from the exhaust gas of the motor vehicle (particularly motorcycle in this work). The activated carbon was prepared from local banana peel which considered as an agricultural waste without economic value. To prepare the activated carbon, banana peel was carbonized using furnace at 500°C. Then the resulted carbon was activated using chemical activation with ZnCl2 and physical activation with either microwave (300 W) or furnace (700°C). The prepared activated carbon was then characterized using Scanning Electron Microscope (SEM) and Fourier Transform Infrared (FT-IR) analysis. The SEM result showed that the pore of microwave induced ZnCl2 activated carbon (ACM) was larger than the pore of virgin char/carbon and furnace induced ZnCl2 activataed carbon (ACF). The FT-IR spectrum of ACM showed some peaks at 3408.59 cm-1, 1589.25 cm-1, and 1093.63 cm-1. They are assigned to O-H stretching, C=O stretching, and C-OH stretching. Additionally, the adsorption performance of the prepared activation carbon to reduce the pollutants concentration (i.e. CO and CH) from the exhaust gas of motor vehicle was investigated. The results showed that the activated carbon induced by microwave and ZnCl2 activation (ACM) gave the best result. The adsorption or removal efficiency of gas CO reached approximately 97.64 %vol.


2021 ◽  
Vol 3 (2) ◽  
pp. 73-79
Author(s):  
Aninda Tifani Puari

Activated carbon (AC) from agricultural waste has become one promising way to produce AC regarding to low price of the precursor and its effect to environment. In this research, the solid waste from the basic biology practical in UPT. Basic and Central Laboratory, Andalas University (Unand) was utilized as the precursor for producing low price AC. The activation was done by chemical activation using three different activating agents which were zink chloride (ZnCl2), phosphoric acid (H3PO4), potassium hydroxide (KOH). The carbonization process was done at temperature of 700°C. The precursor and three different AC after activation were characterized using fourier-transform infrared spectroscopy (FT-IR) to examine  the functional group and scanning electron microscope (SEM) to observe the pores structure. The adsorption efficiency (AE) of each AC on methylene blue (MB) contained in laboratory wastewater was examined through adsorption process with retention time of 30 minutes at room temperature and neutral pH. SEM analysis showed that the three activating agents were resulting in higher surface area and more pores were formed. The highest AE of MB from laboratory wastewater for each AC were 97,5 %, 96,31%, and 90,79 for KOH, , ZnCl2, and H3PO4, respectively. Meanwhile, the highest adsorption capacity was achieved by AC through KOH activation with 0,003 mg/g


2021 ◽  
Vol 6 (1) ◽  
pp. 7
Author(s):  
Aulia Qisti ◽  
Yudhi Utomo ◽  
Deni Ainur Rokhim

Batik is a characteristic Indonesian textile product. The color of batik is one component that affects the quality of batik. Various types of batik dyes, one of which is remazol dyes. Remazol dyes are synthetic dyes that have strong chemical bonds. This is what underlies the process of production of the household batik industry in the village of Purwosekar, District of Tajinan, Malang Regency, with remazol coloring will produce liquid waste that is difficult to be deciphered naturally. This study aims to provide a water treatment solution using the coconut shell activated carbon adsorption method with chemical activation and the ability to adsorb remazol dyes. Adsorption experiments were carried out in batches with a mesh size of 8 with coconut shell carbon activated with 1 M HCl solution for 24 hours. The absorption of remazol dyes by coconut shell activated charcoal is carried out with a stirring speed variation for 60 minutes and the mass of activated charcoal to find the optimum adsorption conditions. Stirring speed variations are 30 rpm, 60 rpm, and 90 rpm, resulting in the highest efficiency at a speed of 90 rpm. While the variations in mass are 200 grams and 300 grams, the highest efficiency is obtained with a mass of 300 grams. Thus, the efficiency of the coconut shell activated carbon is proportional to the stirring speed and mass of the coconut shell activated carbon used


1994 ◽  
Vol 29 (8) ◽  
pp. 221-233
Author(s):  
Shimshon Belkin ◽  
Asher Brenner ◽  
Alon Lebel ◽  
Aharon Abeliovich

A case study is presented, in which two approaches to the treatment of complex chemical wastewater are experimentally compared: an end-of-pipe “best available technology” option and an in-plant source segregation program. Both options proved to be feasible. Application of the powdered activated carbon treatment (PACT™) process for the combined end-of-pipe stream yielded up to 93% reduction of dissolved organic carbon, with complete toxicity elimination. In order to examine the potential for applying a conventional activated sludge process, a simplified laboratory screening procedure was devised, aimed at establishing baseline data of removability potential, defined either by biodegradation, activated carbon adsorption or volatilization. Using this procedure, the major source of the non-biodegradable fraction in the combined park's wastewater was traced to a single factory, from which twelve individual source streams were screened. The results allowed the division of the tested sources into three groups: degradable, volatile, and problematic. A modified wastewater segregation and treatment program was accordingly proposed, which should allow an efficient and environmentally acceptable solution. This program is presently at its final testing stages, at the conclusion of which a full comparison between the two approaches will be carried out.


1998 ◽  
Vol 32 (6) ◽  
pp. 1841-1851 ◽  
Author(s):  
Lois J. Uranowski ◽  
Charles H. Tessmer ◽  
Radisav D. Vidic

Sign in / Sign up

Export Citation Format

Share Document