scholarly journals Normal Supercharacter Theory

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Farid Aliniaeifard

International audience There are three main constructions of supercharacter theories for a group G. The first, defined by Diaconis and Isaacs, comes from the action of a group A via automorphisms on our given group G. Another general way to construct a supercharacter theory for G, defined by Diaconis and Isaacs, uses the action of a group A of automor- phisms of the cyclotomic field Q[ζ|G|]. The third, defined by Hendrickson, is combining a supercharacter theories of a normal subgroup N of G with a supercharacter theory of G/N . In this paper we construct a supercharacter theory from an arbitrary set of normal subgroups of G. We show that when we consider the set of all normal subgroups of G, the corresponding supercharacter theory is related to a partition of G given by certain values on the central primitive idempotents. Also, we show the supercharacter theories that we construct can not be obtained via automorphisms or a single normal subgroup.

2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Jiachao Wu

The main results are about the groups of the negations on the unit square, which is considered as a bilattice. It is proven that all the automorphisms on it form a group; the set, containing the monotonic isomorphisms and the strict negations of the first (or the second or the third) kind, with the operator “composition,” is a groupG2(orG3orG4, correspondingly). All these four kinds of mappings form a groupG5. And all the groupsGi,i=2,3,4are normal subgroups ofG5. Moreover, forG5, a generator set is given, which consists of all the involutive negations of the second kind and the standard negation of the first kind. As a subset of the unit square, the interval-valued set is also studied. Two groups are found: one group consists of all the isomorphisms onLI, and the other group contains all the isomorphisms and all the strict negations onLI, which keep the diagonal. Moreover, the former is a normal subgroup of the latter. And all the involutive negations on the interval-valued set form a generator set of the latter group.


Author(s):  
C. Claire Thomson

Building on the picture of post-war Anglo-Danish documentary collaboration established in the previous chapter, this chapter examines three cases of international collaboration in which Dansk Kulturfilm and Ministeriernes Filmudvalg were involved in the late 1940s and 1950s. They Guide You Across (Ingolf Boisen, 1949) was commissioned to showcase Scandinavian cooperation in the realm of aviation (SAS) and was adopted by the newly-established United Nations Film Board. The complexities of this film’s production, funding and distribution are illustrative of the activities of the UN Film Board in its first years of operation. The second case study considers Alle mine Skibe (All My Ships, Theodor Christensen, 1951) as an example of a film commissioned and funded under the auspices of the Marshall Plan. This US initiative sponsored informational films across Europe, emphasising national solutions to post-war reconstruction. The third case study, Bent Barfod’s animated film Noget om Norden (Somethin’ about Scandinavia, 1956) explains Nordic cooperation for an international audience, but ironically exposed some gaps in inter-Nordic collaboration in the realm of film.


2011 ◽  
Vol 31 (6) ◽  
pp. 1835-1847 ◽  
Author(s):  
PAUL A. SCHWEITZER, S. J.

AbstractWe determine all the normal subgroups of the group of Cr diffeomorphisms of ℝn, 1≤r≤∞, except when r=n+1 or n=4, and also of the group of homeomorphisms of ℝn ( r=0). We also study the group A0 of diffeomorphisms of an open manifold M that are isotopic to the identity. If M is the interior of a compact manifold with non-empty boundary, then the quotient of A0 by the normal subgroup of diffeomorphisms that coincide with the identity near to a given end e of M is simple.


Author(s):  
L.A. Kurdachenko ◽  
◽  
A.A. Pypka ◽  
I.Ya. Subbotin ◽  
◽  
...  

We investigate the influence of some natural types of subgroups on the structure of groups. A subgroup H of a group G is called contranormal in G, if G = HG. A subgroup H of a group G is called core-free in G, if CoreG(H) =〈1〉. We study the groups, in which every non-normal subgroup is either contranormal or core-free. In particular, we obtain the structure of some monolithic and non-monolithic groups with this property


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Christian Stump ◽  
Hugh Thomas ◽  
Nathan Williams

International audience The main objects of noncrossing Catalan combinatorics associated to a finite Coxeter system are noncross- ing partitions, sortable elements, and cluster complexes. The first and the third of these have known Fuss–Catalan generalizations. We provide new viewpoints for these, introduce a corresponding generalization of sortable elements as elements in the positive Artin monoid, and show how this perspective ties together all three generalizations.


2019 ◽  
Vol 18 (04) ◽  
pp. 1950074
Author(s):  
Xuewu Chang

The normal embedding problem of finite solvable groups into [Formula: see text]-groups was studied. It was proved that for a finite solvable group [Formula: see text], if [Formula: see text] has a special normal nilpotent Hall subgroup, then [Formula: see text] cannot be a normal subgroup of any [Formula: see text]-group; on the other hand, if [Formula: see text] has a maximal normal subgroup which is an [Formula: see text]-group, then [Formula: see text] can occur as a normal subgroup of an [Formula: see text]-group under some suitable conditions. The results generalize the normal embedding theorem on solvable minimal non-[Formula: see text]-groups to arbitrary [Formula: see text]-groups due to van der Waall, and also cover the famous counterexample given by Dade and van der Waall independently to the Dornhoff’s conjecture which states that normal subgroups of arbitrary [Formula: see text]-groups must be [Formula: see text]-groups.


Author(s):  
D. B. McAlister

SynopsisThe aim of this paper is to describe the free product of a pair G, H of groups in the category of inverse semigroups. Since any inverse semigroup generated by G and H is a homomorphic image of this semigroup, this paper can be regarded as asking how large a subcategory, of the category of inverse semigroups, is the category of groups? In this light, we show that every countable inverse semigroup is a homomorphic image of an inverse subsemigroup of the free product of two copies of the infinite cyclic group. A similar result can be obtained for arbitrary cardinalities. Hence, the category of inverse semigroups is generated, using algebraic constructions by the subcategory of groups.The main part of the paper is concerned with obtaining the structure of the free product G inv H, of two groups G, H in the category of inverse semigroups. It is shown in section 1 that G inv H is E-unitary; thus G inv H can be described in terms of its maximum group homomorphic image G gp H, the free product of G and H in the category of groups, and its semilattice of idempotents. The second section considers some properties of the semilattice of idempotents while the third applies these to obtain a representation of G inv H which is faithful except when one group is a non-trivial finite group and the other is trivial. This representation is used in section 4 to give a structure theorem for G inv H. In this section, too, the result described in the first paragraph is proved. The last section, section 5, consists of examples.


1961 ◽  
Vol 16 (6) ◽  
pp. 1093-1096
Author(s):  
J. W. Hollingsworth ◽  
H. B. Hamilton ◽  
G. Ishii

As part of a physiologic aging assessment in survivors of the atomic bombing, agglutinability of erythrocytes with A and B antisera was studied in 1,495 subjects in Hiroshima. It was found that erythrocyte agglutinability is maximal during the third decade and falls progressively with advancing years. At age 20—40, agglutinability of erythrocytes from females was somewhat less than that of males. Subjects of blood group AB demonstrated agglutinability titers with both antisera comparable to the titers of the group A and B subjects. Analysis of agglutinability titers in relationship to degree of irradiation from the Hiroshima atomic bomb in 1945 failed to show differences, but the sample was too small to allow definite conclusions about possible radiation-accelerated aging. Note: With the Technical Assistance of N. Ueda Submitted on February 16, 1961


Author(s):  
Jonathan A. Hillman

AbstractWe extend earlier work relating asphericity and Euler characteristics for finite complexes whose fundamental groups have nontrivial torsion free abelian normal subgroups. In particular a finitely presentable group which has a nontrivial elementary amenable subgroup whose finite subgroups have bounded order and with no nontrivial finite normal subgroup must have deficiency at most 1, and if it has a presentation of deficiency 1 then the corresponding 2-complex is aspherical. Similarly if the fundamental group of a closed 4-manifold with Euler characteristic 0 is virtually torsion free and elementary amenable then it either has 2 ends or is virtually an extension of Z by a subgroup of Q, or the manifold is asphencal and the group is virtually poly- Z of Hirsch length 4.


2013 ◽  
Vol 12 (05) ◽  
pp. 1250204
Author(s):  
AMIN SAEIDI ◽  
SEIRAN ZANDI

Let G be a finite group and let N be a normal subgroup of G. Assume that N is the union of ξ(N) distinct conjugacy classes of G. In this paper, we classify solvable groups G in which the set [Formula: see text] has at most three elements. We also compute the set [Formula: see text] in most cases.


Sign in / Sign up

Export Citation Format

Share Document