scholarly journals Apply Matlab in Thingspeak Server to build the system measure and analyze data using IoT Gateway technology

2020 ◽  
Vol 61 (5) ◽  
pp. 88-95
Author(s):  
Chi Van Dang ◽  
Khoat Duc Nguyen ◽  
Hieu Dao ◽  
Luc The Nguyen ◽  

ThingSpeak is an open Internet of Things (IoT) platform with MATLAB® analytics that enables the collection and storage of sensor data in the cloud and development of IoT applications. The ThingSpeak IoT platform provides applications that allow data analysis and visualization in MATLAB. With MATLAB® analysis in ThingSpeak, MATLAB code can be executed to perform preprocessing, visualization, filtering, data analysis, and for object modeling applications. This paper presents researches on Matlab application in Thingspeak Server to build data measurement and analysis system using IoT LoRa Gateway technology. The research contents include suggestions on device configuration for the system, programming the Arduino board and LoRa Shield to collect measurement data from sensor nodes and communicate by LoRa waves to the LoRa Gateway. The LoRa Gateway will send data to Web Server based on Thingspeak's Cloud Service platform using MQTT (Message Queing Telemetry Transport). Thingspeak's Matlab interface will display online and store values from the sensor nodes. The system is integrated and tested on temperature and humidity monitoring model, evaluated for the results with the required accuracy. The research results allow the deployment of IoT Gateway system in practice for online measurement, analysis and data processing applications that require the use of algorithms and code generation in Matlab using Web Server.

Author(s):  
Shintaro Imai ◽  
Mariko Miyamoto ◽  
Mingrui Cai ◽  
Yoshikazu Arai ◽  
Toshimitsu Inomata

Systems for estimating human motion using acceleration sensors present the following two problems: 1) advanced analysis and processing of sensor data are difficult because of resource limitations of sensor nodes; and 2) such analyses and processes burden the network because numerous sensor data are sent to the network. The authors’ proposed method described herein for sensor data analysis and processing uses a host computer located near sensor nodes (neighborhood host). This method is intended to achieve a good balance between reduction of the network load and advanced sensor data analysis and processing. Moreover, this method incorporates reduction of the load to sensor nodes. To evaluate their method, the authors implement two prototype systems that use different machine learning methods. The authors conduct some experiments using these prototype systems. The experimentally obtained results demonstrate that the proposed method can resolve two problems.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 634
Author(s):  
Tarek Frahi ◽  
Francisco Chinesta ◽  
Antonio Falcó ◽  
Alberto Badias ◽  
Elias Cueto ◽  
...  

We are interested in evaluating the state of drivers to determine whether they are attentive to the road or not by using motion sensor data collected from car driving experiments. That is, our goal is to design a predictive model that can estimate the state of drivers given the data collected from motion sensors. For that purpose, we leverage recent developments in topological data analysis (TDA) to analyze and transform the data coming from sensor time series and build a machine learning model based on the topological features extracted with the TDA. We provide some experiments showing that our model proves to be accurate in the identification of the state of the user, predicting whether they are relaxed or tense.


2011 ◽  
Vol 467-469 ◽  
pp. 108-113
Author(s):  
Xin Yu Li ◽  
Dong Yi Chen

Accurate tracking for Augmented Reality applications is a challenging task. Multi-sensors hybrid tracking generally provide more stable than the effect of the single visual tracking. This paper presents a new tightly-coupled hybrid tracking approach combining vision-based systems with inertial sensor. Based on multi-frequency sampling theory in the measurement data synchronization, a strong tracking filter (STF) is used to smooth sensor data and estimate position and orientation. Through adding time-varying fading factor to adaptively adjust the prediction error covariance of filter, this method improves the performance of tracking for fast moving targets. Experimental results show the efficiency and robustness of this proposed approach.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2884 ◽  
Author(s):  
Xiaobo Chen ◽  
Cheng Chen ◽  
Yingfeng Cai ◽  
Hai Wang ◽  
Qiaolin Ye

The problem of missing values (MVs) in traffic sensor data analysis is universal in current intelligent transportation systems because of various reasons, such as sensor malfunction, transmission failure, etc. Accurate imputation of MVs is the foundation of subsequent data analysis tasks since most analysis algorithms need complete data as input. In this work, a novel MVs imputation approach termed as kernel sparse representation with elastic net regularization (KSR-EN) is developed for reconstructing MVs to facilitate analysis with traffic sensor data. The idea is to represent each sample as a linear combination of other samples due to inherent spatiotemporal correlation, as well as periodicity of daily traffic flow. To discover few yet correlated samples and make full use of the valuable information, a combination of l1-norm and l2-norm is employed to penalize the combination coefficients. Moreover, the linear representation among samples is extended to nonlinear representation by mapping input data space into high-dimensional feature space, which further enhances the recovery performance of our proposed approach. An efficient iterative algorithm is developed for solving KSR-EN model. The proposed method is verified on both an artificially simulated dataset and a public road network traffic sensor data. The results demonstrate the effectiveness of the proposed approach in terms of MVs imputation.


Author(s):  
Osman Salem ◽  
Alexey Guerassimov ◽  
Ahmed Mehaoua ◽  
Anthony Marcus ◽  
Borko Furht

This paper details the architecture and describes the preliminary experimentation with the proposed framework for anomaly detection in medical wireless body area networks for ubiquitous patient and healthcare monitoring. The architecture integrates novel data mining and machine learning algorithms with modern sensor fusion techniques. Knowing wireless sensor networks are prone to failures resulting from their limitations (i.e. limited energy resources and computational power), using this framework, the authors can distinguish between irregular variations in the physiological parameters of the monitored patient and faulty sensor data, to ensure reliable operations and real time global monitoring from smart devices. Sensor nodes are used to measure characteristics of the patient and the sensed data is stored on the local processing unit. Authorized users may access this patient data remotely as long as they maintain connectivity with their application enabled smart device. Anomalous or faulty measurement data resulting from damaged sensor nodes or caused by malicious external parties may lead to misdiagnosis or even death for patients. The authors' application uses a Support Vector Machine to classify abnormal instances in the incoming sensor data. If found, the authors apply a periodically rebuilt, regressive prediction model to the abnormal instance and determine if the patient is entering a critical state or if a sensor is reporting faulty readings. Using real patient data in our experiments, the results validate the robustness of our proposed framework. The authors further discuss the experimental analysis with the proposed approach which shows that it is quickly able to identify sensor anomalies and compared with several other algorithms, it maintains a higher true positive and lower false negative rate.


Author(s):  
Xiangxue Zhao ◽  
Shapour Azarm ◽  
Balakumar Balachandran

Online prediction of dynamical system behavior based on a combination of simulation data and sensor measurement data has numerous applications. Examples include predicting safe flight configurations, forecasting storms and wildfire spread, estimating railway track and pipeline health conditions. In such applications, high-fidelity simulations may be used to accurately predict a system’s dynamical behavior offline (“non-real time”). However, due to the computational expense, these simulations have limited usage for online (“real-time”) prediction of a system’s behavior. To remedy this, one possible approach is to allocate a significant portion of the computational effort to obtain data through offline simulations. The obtained offline data can then be combined with online sensor measurements for online estimation of the system’s behavior with comparable accuracy as the off-line, high-fidelity simulation. The main contribution of this paper is in the construction of a fast data-driven spatiotemporal prediction framework that can be used to estimate general parametric dynamical system behavior. This is achieved through three steps. First, high-order singular value decomposition is applied to map high-dimensional offline simulation datasets into a subspace. Second, Gaussian processes are constructed to approximate model parameters in the subspace. Finally, reduced-order particle filtering is used to assimilate sparsely located sensor data to further improve the prediction. The effectiveness of the proposed approach is demonstrated through a case study. In this case study, aeroelastic response data obtained for an aircraft through simulations is integrated with measurement data obtained from a few sparsely located sensors. Through this case study, the authors show that along with dynamic enhancement of the state estimates, one can also realize a reduction in uncertainty of the estimates.


2018 ◽  
Vol 14 (11) ◽  
pp. 155014771881130 ◽  
Author(s):  
Jaanus Kaugerand ◽  
Johannes Ehala ◽  
Leo Mõtus ◽  
Jürgo-Sören Preden

This article introduces a time-selective strategy for enhancing temporal consistency of input data for multi-sensor data fusion for in-network data processing in ad hoc wireless sensor networks. Detecting and handling complex time-variable (real-time) situations require methodical consideration of temporal aspects, especially in ad hoc wireless sensor network with distributed asynchronous and autonomous nodes. For example, assigning processing intervals of network nodes, defining validity and simultaneity requirements for data items, determining the size of memory required for buffering the data streams produced by ad hoc nodes and other relevant aspects. The data streams produced periodically and sometimes intermittently by sensor nodes arrive to the fusion nodes with variable delays, which results in sporadic temporal order of inputs. Using data from individual nodes in the order of arrival (i.e. freshest data first) does not, in all cases, yield the optimal results in terms of data temporal consistency and fusion accuracy. We propose time-selective data fusion strategy, which combines temporal alignment, temporal constraints and a method for computing delay of sensor readings, to allow fusion node to select the temporally compatible data from received streams. A real-world experiment (moving vehicles in urban environment) for validation of the strategy demonstrates significant improvement of the accuracy of fusion results.


Sign in / Sign up

Export Citation Format

Share Document