Validation of the vertical profiles of HCl over the wide range of the stratosphere to the lower thermosphere measured by SMILES
Abstract. Hydrogen chloride (HCl) is the most abundant (more than 95 %) among inorganic chlorine compounds Cly in the stratosphere. The HCl molecule has been observed to obtain long-term quantitative estimations of total budget of the stratospheric anthropogenic chlorine compounds. In this study, we provided HCl vertical profiles at altitudes of 16–100 km using the superconducting submillimeter-wave limb-emission sounder (SMILES) from space. We used the SMILES Level-2 research product version 3.0.0. The period of the SMILES HCl observation was from October 12, 2009 to April 21, 2010, and the latitude coverage was 40S–65N. The average HCl vertical profile showed an increase with altitude up to the stratopause (~ 45 km), approximately constant values between the stratopause and the upper mesosphere (~ 80 km), and a decrease from the mesopause to the lower thermosphere (~ 100 km). This behavior was observed in the all latitude regions, and reproduced by the SD-WACCM model. We compared the SMILES HCl vertical profiles in the stratosphere and lower mesosphere with HCl profiles from MLS on the Aura satellite, as well as from ACE-FTS on SCISAT and from TELIS (balloon-borne). The TELIS observations were performed using the superconductive limb emission technique, as used by SMILES. The globally averaged vertical HCl profiles of SMILES well agreed with those of MLS and ACE-FTS within 0.25 and 0.2 ppbv between 20 and 40 km, respectively. The SMILES HCl concentration was smaller than those of MLS and ACE/FTS as the altitude increased from 40 km, and the difference was approximately 0.4–0.5 ppbv at 50–60 km. The difference between SMILES and TELIS HCl observations was about 0.3 ppbv in the polar winter region between 20 and 34 km, except near 26 km. SMILES HCl error sources that may cause discrepancies with the other observations are investigated by a theoretical error analysis. We calculated errors caused by the uncertainties of spectroscopic parameters, instrument functions, and atmospheric temperature profiles. The jacobian for the temperature explains the negative bias of the SMILES HCl concentration at 50–60 km. The HCl vertical profile from the middle troposphere to the lower thermosphere is reported for the first time from SMILES observations; the data quality is quantified by comparisons with other measurements and via theoretical error analysis.