scholarly journals Cell Membrane Stability and Relative Water Content of Cymbopogon citratus (Lemon Grass)

Author(s):  
H. M. Maishanu ◽  
A. M. Rabe

In this research the cell membrane stability (CMS), relative water content (RWC) and effect of different water interval on Cymbopogon citratus (lemon grass) was assessed. The cell membrane stability and relative water content of the plant shows the physiological activity of the plant. The plant sample was subjected to three different watering regimes viz: one, two- and three-days intervals with a control sample irrigated daily for a period of twelve months. Uniform stalk of lemon grass plants were planted into a depth of 7.5 cm composted soil, each treatment was made in triplicate. The evaluated growth parameters where height of the plant, number of leaves and tillers, which were taken weekly for period of twelve months (year). The height shows a significant difference from first to twelfth month after planting. The height of the plant increases simultaneous with the age of the plant. First month after planting show significant difference in height of sample watered daily and treated samples.  The results shows that the RWC (07.14%) and CMS (52.58%) was low in samples under water stress respectively when compared to well-watered samples (55.41%). No significant difference was observed between samples under one, two and three days interval. The number of leaves differs significantly in the first MAP except in the samples watered daily and three days interval. Maximum number of leaves was achieved at twelfth MAP under one day interval (137.33) followed by samples watered daily (126) and two days interval, while three days interval has the least number of leaves (leaf number). The number of tillers shows significant differences between the means at fifth and sixth MAP, (fifth MAP = 73.33 and sixth MAP = 126) and the treatments under one day intervals (fifth MAP = 18.33 and sixth MAP = 35.67). In the research, samples watered daily and under one day intervals shows high productivity when compared to the remaining treatment.

2015 ◽  
Vol 48 (1) ◽  
pp. 107-114 ◽  
Author(s):  
S. Parvin ◽  
T. Javadi ◽  
N. Ghaderi

Abstract Drought is one of the critical environmental stresses that affect growth and development of plants. Plants are damaged directly and indirectly under drought stress. Increasing water stress tolerance in plants is crucial. The aim of this study was to investigate the effects of different water stress levels (-1, -5, and -10 bars) and paclobutrazol application (0 and 50 mg-1) on strawberry cv. Paros. According to analyses of variance there were significant effects of drought stress and paclobutrazol application on leaf area, leaf dry weight, leaf relative water content (RWC), cell membrane stability index (MSI), proline and protein content of leaves. Leaf area, leaf dry weight, leaf relative water content and cell membrane stability index decreased in drought stress, especially at -10 bars. Proline and protein contents were enhanced by increasing water stress levels. Paclobutrazol application increased leaf relative water content and cell membrane stability index, proline and protein contents of leaves. Leaf relative water content was 68.77% in -10 bars drought stress that increased to 79% in paclobutrazol treatment. Also, cell membrane stability index was 69.65% in severe drought stress and reached to 77% in paclobutrazol treatment. According to the results pacloburazol is a benefit substance to ameliorate drought stress effects in strawberry cv. Paros.


2018 ◽  
Vol 16 (1) ◽  
pp. 1-6 ◽  
Author(s):  
I Nowsherwan ◽  
G Shabbir ◽  
SI Malik ◽  
M Ilyas ◽  
MS Iqbal ◽  
...  

The present study was designed to evaluate the changes in different physiological traits such as proline content, cell membrane stability, relative water content and chlorophyll content under drought stress in sixteen wheat genotypes. Wheat genotypes (99FJ-03, Marvi-2000, WC- 13, WC-24, WC-19, Faisalabad-85, Kaghan, Bahawalpur, Zarlashta, Punjab-96, Shafaq, Maxi-pak, WC-20, Chenab-70, AUR-0809, Chakwal) were sown during rabiseason of 2013-14 following randomized complete block design with three replications. Drought stress was induced by withholding water for 30 days at heading and anthesis stage. Genotypes were significant for different physiological traits like relative water content, proline content, cell membrane stability and chlorophyll content under drought stress which indicated that some genotypes were more tolerant against drought stress than others. Among tested wheat genotypes, Maxi-Pak was found to be potential variety for relative water content, cell membrane stability, chlorophyll content and yield. Hence, it can be used in future wheat breeding programme for developing drought tolerant genotypes.SAARC J. Agri., 16(1): 1-6 (2018)


2017 ◽  
Vol 9 (2) ◽  
pp. 1036-1041 ◽  
Author(s):  
Priyanka Kumari ◽  
H. K. Jaiswal

Cold stress at seedling stage is a major constraint in boro rice production. Nine boro rice lines were crossed in diallel fashion excluding reciprocals to obtain 36 crosses. All the 36 crosses along with parents were grown in nursery in three seasons (boro-2014, kharif-2015 and boro-2015). Performance of seedlings for survival per cent, chlorophyll content, relative water content, membrane stability index was recorded just before transplanting in all the three seasons. Scoring for cold tolerance was done in both boro seasons. Gautam showed highest survival rate over three seasons. Among crosses, IR 64 x Krishna Hamsa showed highest survival (84%) in boro-2014, MTU 1010 x Jaya (86.33%) in boro-2015 and MTU 1010 x Krishna Hamsa (95.67%) in kharif-2015. Jaya x Krishna Hamsa was most cold tolerant cross over both boro seasons. Significant positive correlation was observed among survival per cent, chlorophyll content, relative water content and membrane stability index over seasons.


2021 ◽  
Vol 72 (4) ◽  
pp. 280
Author(s):  
Mohammad Moradi ◽  
Hamid Dehghani ◽  
Sied Zabihallah Ravari

Improvement of tomato (Lycopersicon esculentum L.) for growth in saline soils is a major goal of tomato breeders. The aim of this study was to identify the genetic combining ability and genetics of salinity tolerance in tomato. Plant materials were grown under normal (NG) and salinity stress (SSG) conditions. Results showed that the genetic controlling mechanism of salinity-related traits and fruit weight is complex and that all genetic components of additive, non-additive and maternal are involved. The nature of gene action for fruit weight and salinity-related traits was significantly affected by salinity stress. Dominance and additive gene action were predominant under NG and SSG, respectively. Under NG, the best general combiner parent for fruit weight was P3 (salt-tolerant with moderate fruit yield). Under SSG, P1 (highly salt-tolerant with low fruit yield) was the best general combiner parent for fruit weight and exhibited high genetic combining ability for K+/Na+, lipoxygenase activity, proline, relative water content, total carbohydrate and cell membrane stability. With the high frequency of genes effective in salt tolerance, the P1 parent appeared as the best specific mating partner with other parents under SSG. Simultaneous selection for fruit weight and surrogate traits (cell membrane stability, proline and relative water content) in a population derived from the P1 × P5 (susceptible with high fruit yield) cross could result in a salt-tolerant tomato genotype.


2020 ◽  
Vol 48 (1) ◽  
pp. 234-244
Author(s):  
Edinéia M.M. BARTIERES ◽  
Silvana P.Q. SCALON ◽  
Daiane M. DRESCH ◽  
Edvânia A.S. CARDOSO ◽  
Mailson V. JESUS ◽  
...  

In this research it was hypothesized that Campomanesia xanthocarpa can overcome some level of water deficiency by adjusting physiological parameters and that shading minimizes the water deficit effects while maintaining elevated photosynthetic rates and relative water content of the leaves and makes a resumption of metabolism and growth when the water supply is normalized. The seedlings were submitted to two water regimes (continuous irrigation - CI and intermittent irrigation - II), three shading percentages (0, 30 and 70%) and six evaluation times (Start - T0, 1st Photosynthesis Zero - 1st P0, 1st Recovery - 1st REC, 2nd Photosynthesis Zero - 2nd P0, 2nd Recovery - 2nd REC and END). Plants under water deficit at 0% shading led to a reduction in photosynthetic metabolism, relative water content (RWC), leaf area, number of leaves, and height, especially during the stress periods 1st and 2nd P0. The 30 and 70% shading mitigated the stressful effect of water deficit on C. xanthocarpa seedlings. The results did not confirm the hypothesis that C. xanthocarpa seedlings are intolerant to water deficit since, although sensitive, they presented a potential for recovery of photosynthetic and growth characteristics under all cultivation conditions. It was concluded that that shading minimizes the stressful effects of water deficit.


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 630 ◽  
Author(s):  
Yaser Hafez ◽  
Kotb Attia ◽  
Salman Alamery ◽  
Abdelhalim Ghazy ◽  
Abdullah Al-Doss ◽  
...  

The impact of biochar and chitosan on barley plants under drought stress conditions was investigated during two field experiments. Our results confirmed that drought stress negatively affected morphological and physiological growth traits of barley plants such as plant height, number of leaves, chlorophyll concentrations, and relative water content. However, electrolyte leakage (EL%), lipid peroxidation (MDA), soluble sugars, sucrose and starch contents significantly increased as a response to drought stress. Additionally, 1000 grain weight, grains yield ha−1 and biological yield significantly decreased in stressed barley plants, also anatomical traits such as upper epidermis, lower epidermis, lamina, and mesophyll tissue thickness as well as vascular bundle diameter of flag leaves significantly decreased compared with control. The use of biochar and chitosan led to significant increases in plant height, number of leaves, and chlorophyll concentrations as well as relative water content; nevertheless these treatments led to significant decreases in electrolyte leakage (EL%) and lipid peroxidation (MDA) in the stressed plants. Moreover, anatomical and yield characters of stressed barley plants were improved with application of biochar and chitosan. The results proved the significance of biochar and chitosan in alleviating the damaging impacts of drought on barley plants.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1086e-1086
Author(s):  
Cynthia B. McKenney ◽  
Marihelen Kamp-Glass

The effectiveness of antitranspirant type and concentration on the leaf water relations of Saliva splendens F. `Firebird and Petunia × hybrida Juss. `Comanche'. Two film-forming antitranspirants, Cloud Cover and Folicote, were tested at three different concentrations in two different environments. The leaf water potential, stomatal conductance, and relative water content were evaluated. Transpiration per unit vapor pressure deficit and stomatal conductance for both crops decrease slightly but there was no trend with respect to the film type, environment or concentration rate. The leaf water potentials and relative water content did not show significant difference after antitranspirant application. In order for antitranspirant application to be of benefit to the growth of herbaceous plants, a more durable coating that remains semipermeable would have to be utilized.


Sign in / Sign up

Export Citation Format

Share Document