scholarly journals Unveiling Perturbing Effects of P-R Drag on Motion around Triangular Lagrangian Points of the Photogravitational Restricted Problem of Three Oblate Bodies

Author(s):  
Tajudeen Oluwafemi Amuda ◽  
Oni Leke ◽  
Abdulrazaq Abdulraheem

The perturbing effects of the Poynting-Robertson drag on motion of an infinitesimal mass around triangular Lagrangian points of the circular restricted three-body problem under small perturbations in the Coriolis and centrifugal forces when the three bodies are oblate spheroids and the primaries are emitters of radiation pressure, is the focus of this paper. The equations governing the dynamical system have been derived and locations of triangular Lagrangian points are determined. It is seen that the locations are influenced by the perturbing forces of centrifugal perturbation and the oblateness, radiation pressure and, P-R drag of the primaries. Using the software Mathematica, numerical analysis are carried out to demonstrate how the dynamical elements: mass ratio, oblateness, radiation pressure, P-R drag and centrifugal perturbation influence the positions of triangular equilibrium points, zero velocity surfaces and the stability. Our investigation reveals that, though the radiation pressure, oblateness and centrifugal perturbation decrease region of stability when motion is stable, however, they are not the influential forces of instability but the P-R drag. In the region when motion around the triangular points are stable an inclusion of the P-R drag of the bigger primary even by an almost negligible value of 1.04548*10-9 overrides other effect and changes stability to instability. Hence, we conclude that the P-R drag is a strong perturbing force which changes stability to instability and motion around triangular Lagrangian points remain unstable in the presence of the P-R drag.

2021 ◽  
Author(s):  
Jagadish Singh ◽  
Shitu Muktar Ahmad

Abstract This paper studies the position and stability of equilibrium points in the circular restricted three-body problem (CR3BP) under the influence of small perturbations in the Coriolis and centrifugal forces when the primaries are radiating and heterogeneous oblate spheroids. It is seen that there exist five libration points as in the classical restricted three-body problem, three collinear Li(i=1,2,3) and two triangular Li(i= 4,5). It is also seen that the triangular points are no longer to form equilateral triangles with the primaries rather they form simple triangles with line joining the primaries. It is further observed that despite all perturbations the collinear points remain unstable while the triangular points are stable for 0 < µ < µc and unstable for µc ≤ µ ≤ ½, where µc is the critical mass ratio depending upon aforementioned parameters. It is marked that small perturbation in the Coriolis force, radiation and heterogeneous oblateness of the both primaries have destabilizing tendencies. Their numerical examination is also performed.


2018 ◽  
Vol 6 (1) ◽  
pp. 8
Author(s):  
Nabawia Khalifa

This paper represents a semi-analytical study of the effect of ground-based laser radiation pressure on the location of triangular points in the framework of the planar circular restricted three-body problem (CR3BP). The formulation includes both the effects of oblateness of J2 in addition to laser radiation pressure, where laser’s disturbing function expanded in Legendre polynomials up to the first order. Earth-Moon system is considered in which a laser station is located on Earth and sends laser beams toward the infinitesimal body. The model takes into account the effect of Earth's atmosphere on laser beam propagation. The numerical application emphasis that the location of the triangular points affected by the considered perturbations.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jagadish Singh ◽  
Sunusi Haruna

Abstract The present paper studies the locations and linear stability of the triangular equilibrium points when both primaries are radiating and considered as heterogeneous spheroid with three layers of different densities. Additionally, we include the effects of small perturbations in the Coriolis and centrifugal forces and potential from a belt (circumbinary disc). It is observed that the positions of the triangular equilibrium points are substantially affected by all parameters (except a perturbation in Coriolis force) involved in the system.The stabilty of motion is found only when $$0 < \mu < \mu_{c}$$ 0 < μ < μ c , where $$\mu_{c}$$ μ c is the critical mass value which depends on the combined effect of radiation pressures and heterogeneity of the primaries, small perturbations and the potential from a belt.It is also seen that the Coriolis force and the belt have stabilizing effect,while the centrifugal force, radiation and heterogeineity of the primaries have destabilizing behaviour.The net effect is that the size of the region of stability decreases when the value of these parameters increases where $$\mu$$ μ is the mass ratio and $$k_{1} ,k_{2}$$ k 1 , k 2 characterize heterogeneity of both primaries. A practical application of this model could be the study of motion of a dust grain near the heterogeneous and luminous binary stars surrounded by a belt.Finally, we carried out and discuss numerical experiments aiming at computing the positions of triangular points and critical masses of three binary systems: Archid, Xi Booties and Kruger 60.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
A. Narayan ◽  
Amit Shrivastava

The oblateness and the photogravitational effects of both the primaries on the location and the stability of the triangular equilibrium points in the elliptical restricted three-body problem have been discussed. The stability of the triangular points under the photogravitational and oblateness effects of both the primaries around the binary systems Achird, Lyeten, Alpha Cen-AB, Kruger 60, and Xi-Bootis, has been studied using simulation techniques by drawing different curves of zero velocity.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Jagadish Singh ◽  
Oni Leke

The linear stability of equilibrium points of a test particle of infinitesimal mass in the framework of Robe's circular restricted three-body problem, as in Hallan and Rana, together with effect of variation in masses of the primaries with time according to the combined Meshcherskii law, is investigated. It is seen that, due to a small perturbation in the centrifugal force and an arbitrary constant of a particular integral of the Gylden-Meshcherskii problem, every point on the line joining the centers of the primaries is an equilibrium point provided they lie within the shell. Further, a number of pairs of equilibrium points lying on the -plane and forming triangles with the centers of the shell and the second primary exist, for some values of . The points collinear with the center of the shell are found to be stable under some conditions and the range of stability depends on the small perturbations and , while the triangular points are unstable. Illustrative numerical exploration is given to indicate significant improvement of the problem in Hallan and Rana.


2016 ◽  
Vol 10 ◽  
pp. 23-36
Author(s):  
Jagadish Singh ◽  
Blessing Ashagwu ◽  
Aishetu Umar

We investigate in the framework of the elliptic restricted three-body problem (ER3BP), the influence of the zonal harmonics (J2and J4) of the primary and the radiation pressure of the secondary on the positions and stability of the triangular equilibrium points. The triangular points of the problem are affected by the parameters involved in the systems’ dynamics. The positions change with increase in the zonal harmonics, eccentricity and radiation pressure. The triangular points remain stable in the interval 0<μ<μcas shown arbitrarily.


2019 ◽  
Vol 7 (2) ◽  
pp. 25
Author(s):  
Ancy Johnson ◽  
Ram Krishan Sharma

Locations of the Lagrangian points are computed and periodic orbits are studied around the triangular points in the photogravitational elliptic restricted three-body problem (ER3BP) by considering the more massive primary as the source of radiation and smaller primary as an oblate spheroid. A new mean motion taken from Sharma et al. [13] is used to study the effect of radiation pressure and oblateness of the primaries. The critical mass parameter  that bifurcates periodic orbits from non-periodic orbits tends to reduce with radiation pressure and oblateness. The transition curves defining stable region of orbits are drawn for different values of radiation pressure and oblateness using the analytical method of Bennet [14]. Tadpole orbits with long- and short- periodic oscillations are obtained for Sun-Jupiter and Sun-Saturn systems.  


2015 ◽  
Vol 3 (2) ◽  
pp. 97 ◽  
Author(s):  
Ashutosh Narayan ◽  
Krishna Kumar Pandey ◽  
Sandip Kumar Shrivastava

<p>This paper studies effects of the triaxiality and radiation pressure of both the primaries on the stability of the infinitesimal motion about triangular equilibrium points in the elliptical restricted three body problem(ER3BP), assuming that the bigger and the smaller primaries are triaxial and the source of radiation as well. It is observed that the motion around these points is stable under certain condition with respect to the radiation pressure and oblate triaxiality. The critical mass ratio depends on the radiation pressure, triaxiality, semi -major axis and eccentricity of the orbits. It is further analyzed that an increase in any of these parameters has destabilizing effects on the orbits of the infinitesimal.</p>


Author(s):  
S. E. Abd El-Bar

Under the influence of some different perturbations, we study the stability of collinear equilibrium points of the Restricted Three Body Problem. More precisely, the perturbations due to the triaxiality of the bigger primary and the oblateness of the smaller primary, in addition to the relativistic effects, are considered. Moreover, the total potential and the mean motion of the problem are obtained. The equations of motion are derived and linearized around the collinear points. For studying the stability of these points, the characteristic equation and its partial derivatives are derived. Two real and two imaginary roots of the characteristic equation are deduced from the plotted figures throughout the manuscript. In addition, the instability of the collinear points is stressed. Finally, we compute some selected roots corresponding to the eigenvalues which are based on some selected values of the perturbing parameters in the Tables 1, 2.


2021 ◽  
Vol 57 (2) ◽  
pp. 311-319
Author(s):  
M. Radwan ◽  
Nihad S. Abd El Motelp

The main goal of the present paper is to evaluate the perturbed locations and investigate the linear stability of the triangular points. We studied the problem in the elliptic restricted three body problem frame of work. The problem is generalized in the sense that the two primaries are considered as triaxial bodies. It was found that the locations of these points are affected by the triaxiality coefficients of the primaries and the eccentricity of orbits. Also, the stability regions depend on the involved perturbations. We also studied the periodic orbits in the vicinity of the triangular points.


Sign in / Sign up

Export Citation Format

Share Document