canonical homomorphism
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Alex Chirvasitu ◽  
Ryo Kanda ◽  
S. Paul Smith

Abstract The elliptic algebras in the title are connected graded $\mathbb {C}$ -algebras, denoted $Q_{n,k}(E,\tau )$ , depending on a pair of relatively prime integers $n>k\ge 1$ , an elliptic curve E and a point $\tau \in E$ . This paper examines a canonical homomorphism from $Q_{n,k}(E,\tau )$ to the twisted homogeneous coordinate ring $B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ on the characteristic variety $X_{n/k}$ for $Q_{n,k}(E,\tau )$ . When $X_{n/k}$ is isomorphic to $E^g$ or the symmetric power $S^gE$ , we show that the homomorphism $Q_{n,k}(E,\tau ) \to B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ is surjective, the relations for $B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ are generated in degrees $\le 3$ and the noncommutative scheme $\mathrm {Proj}_{nc}(Q_{n,k}(E,\tau ))$ has a closed subvariety that is isomorphic to $E^g$ or $S^gE$ , respectively. When $X_{n/k}=E^g$ and $\tau =0$ , the results about $B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ show that the morphism $\Phi _{|\mathcal {L}_{n/k}|}:E^g \to \mathbb {P}^{n-1}$ embeds $E^g$ as a projectively normal subvariety that is a scheme-theoretic intersection of quadric and cubic hypersurfaces.


2020 ◽  
Vol 21 (1) ◽  
pp. 57
Author(s):  
Antonio A. Andrade ◽  
Agnaldo J. Ferrari ◽  
José C. Interlando ◽  
Robson R. Araujo

In this work, we present constructions of algebraic lattices in Euclidean space with optimal center density in dimensions 2,3,4,5,6,8 and 12, which are rotated versions of the lattices Lambda_n, for n =2,3,4,5,6,8 and K_12. These algebraic lattices are constructed through canonical homomorphism via Z-modules of the ring of algebraic integers of a number field.


2019 ◽  
Vol 2020 (21) ◽  
pp. 8183-8196 ◽  
Author(s):  
Akaki Tikaradze

Abstract Given an algebraic Lie algebra $\mathfrak{g}$ over $\mathbb{C}$, we canonically associate to it a Lie algebra $\mathcal{L}_{\infty }(\mathfrak{g})$ defined over $\mathbb{C}_{\infty }$, the reduction of $\mathbb{C}$ modulo the infinitely large prime, and show that for a class of Lie algebras, $\mathcal{L}_{\infty }(\mathfrak{g})$ is an invariant of the derived category of $\mathfrak{g}$-modules. We give two applications of this construction. First, we show that the bounded derived category of $\mathfrak{g}$-modules determines algebra $\mathfrak{g}$ for a class of Lie algebras. Second, given a semi-simple Lie algebra $\mathfrak{g}$ over $\mathbb{C}$, we construct a canonical homomorphism from the group of automorphisms of the enveloping algebra $\mathfrak{U}\mathfrak{g}$ to the group of Lie algebra automorphisms of $\mathfrak{g}$, such that its kernel does not contain a non-trivial semi-simple automorphism. As a corollary, we obtain that any finite subgroup of automorphisms of $\mathfrak{U}\mathfrak{g}$ is isomorphic to a subgroup of Lie algebra automorphisms of $\mathfrak{g}.$


2017 ◽  
Vol 153 (12) ◽  
pp. 2591-2642
Author(s):  
Yimu Yin

We lay the groundwork in this first installment of a series of papers aimed at developing a theory of Hrushovski–Kazhdan style motivic integration for certain types of nonarchimedean $o$-minimal fields, namely power-bounded $T$-convex valued fields, and closely related structures. The main result of the present paper is a canonical homomorphism between the Grothendieck semirings of certain categories of definable sets that are associated with the $\text{VF}$-sort and the $\text{RV}$-sort of the language ${\mathcal{L}}_{T\text{RV}}$. Many aspects of this homomorphism can be described explicitly. Since these categories do not carry volume forms, the formal groupification of the said homomorphism is understood as a universal additive invariant or a generalized Euler characteristic. It admits not just one, but two specializations to $\unicode[STIX]{x2124}$. The overall structure of the construction is modeled on that of the original Hrushovski–Kazhdan construction.


2015 ◽  
Vol 59 (2) ◽  
pp. 473-481 ◽  
Author(s):  
Javier Majadas

AbstractRegularity, complete intersection and Gorenstein properties of a local ring can be characterized by homological conditions on the canonical homomorphism into its residue field. In positive characteristic, the Frobenius endomorphism (and, more generally, any contracting endomorphism) can also be used for these characterizations. We introduce here a class of local homomorphisms, in some sense larger than all above, for which these characterizations still hold, providing an unified treatment for this class of homomorphisms.


2013 ◽  
Vol 12 (05) ◽  
pp. 1250222 ◽  
Author(s):  
ANUJ BISHNOI ◽  
SANJEEV KUMAR ◽  
SUDESH K. KHANDUJA

Let v be a henselian valuation of arbitrary rank of a field K with valuation ring Rv having maximal ideal Mv. Using the canonical homomorphism from Rv onto Rv/Mv, one can lift any monic irreducible polynomial with coefficients in Rv/Mv to yield monic irreducible polynomials over Rv. Popescu and Zaharescu extended this approach and introduced the notion of lifting with respect to a residually transcendental prolongation w of v to a simple transcendental extension K(x) of K. As it is well known, the residue field of such a prolongation w is [Formula: see text], where [Formula: see text] is the residue field of the unique prolongation of v to a finite simple extension L of K and Y is transcendental over [Formula: see text] (see [V. Alexandru, N. Popescu and A. Zaharescu, A theorem of characterization of residual transcendental extension of a valuation, J. Math. Kyoto Univ.28 (1988) 579–592]). It is known that a lifting of an irreducible polynomial belonging to [Formula: see text] with respect to w, is irreducible over K. In this paper, we give some sufficient conditions to ensure that a given polynomial in K[x] satisfying these conditions which is a lifting of a power of some irreducible polynomial belonging to [Formula: see text] with respect to w, is irreducible over K. Our results extend Eisenstein–Dumas and generalized Schönemann irreducibility criteria.


Author(s):  
Anar Dosiev

AbstractIn the paper we propose an operator approach to the noncommutative Taylor localization problem based on the local left invertibility for operator tuples acting on a Fréchet space. We prove that the canonical homomorphism of the universal enveloping algebra of a nilpotent Lie algebra into its Arens-Michael envelope is the Taylor localization whenever has normal growth.


Author(s):  
L. N. Vaserstein

Let A be an associative ring with 1. For any natural number n, let GLnA denote the group of invertible n by n matrices over A, and let EnA be the subgroup generated by all elementary matrices ai, j, where aεA and 1 ≤ i ≡ j ≤ n. For any (two-sided) ideal B of A, let GLnB be the kernel of the canonical homomorphism GLnA→GLn(A/B) and Gn(A, B) the inverse image of the centre of GLn(A/B) (when n > 1, the centre consists of scalar matrices over the centre of the ring A/B). Let EnB denote the subgroup of GLnB generated by its elementary matrices, and let En(A, B) be the normal subgroup of EnA generated by EnB (when n > 2, the group GLn(A, B) is generated by matrices of the form ai, jbi, j(−a)i, j with aA, b in B, i ≡ j, see [7]). In particuler,is the centre of GLnA


Sign in / Sign up

Export Citation Format

Share Document