complete characterisation
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 11)

H-INDEX

12
(FIVE YEARS 0)

Author(s):  
Abraham Rueda Zoca

AbstractGiven two metric spaces M and N we study, motivated by a question of N. Weaver, conditions under which a composition operator $$C_\phi :{\mathrm {Lip}}_0(M)\longrightarrow {\mathrm {Lip}}_0(N)$$ C ϕ : Lip 0 ( M ) ⟶ Lip 0 ( N ) is an isometry depending on the properties of $$\phi $$ ϕ . We obtain a complete characterisation of those operators $$C_\phi $$ C ϕ in terms of a property of the function $$\phi $$ ϕ in the case that $$B_{{\mathcal {F}}(M)}$$ B F ( M ) is the closed convex hull of its preserved extreme points. Also, we obtain necessary condition for $$C_\phi $$ C ϕ being an isometry in the case that M is geodesic.


10.53733/106 ◽  
2021 ◽  
Vol 52 ◽  
pp. 153-165
Author(s):  
Cheryl Praeger ◽  
Prabir Bhattacharya

Association Schemes and coherent configurations (and the related Bose-Mesner algebra and coherent algebras) are well known in combinatorics with many applications. In the 1990s, Mesner and Bhattacharya introduced a three-dimensional generalisation of association schemes which they called an {\em association scheme on triples} (AST) and constructed examples of several families of ASTs. Many of their examples used 2-transitive permutation groups: the non-trivial ternary relations of the ASTs were sets of ordered triples of pairwise distinct points of the underlying set left invariant by the group; and the given permutation group was a subgroup of automorphisms of the AST. In this paper, we consider ASTs that do not necessarily admit 2-transitive groups as automorphism groups but instead a transitive cyclic subgroup of the symmetric group acts as automorphisms. Such ASTs are called {\em circulant} ASTs and the corresponding ternary relations are called {\em circulant relations}. We give a complete characterisation of circulant ASTs in terms of AST-regular partitions of the underlying set. We also show that a special type of circulant, that we call a {\em thin circulant}, plays a key role in describing the structure of circulant ASTs. We outline several open questions.  


Haemophilia ◽  
2021 ◽  
Author(s):  
Yohann Jourdy ◽  
Claire Bardel ◽  
Mathilde Fretigny ◽  
Flavie Diguet ◽  
Pierre‐Antoine Rollat‐Farnier ◽  
...  

10.37236/9979 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Daniele Celoria ◽  
Naya Yerolemou

We obtain a simple and complete characterisation of which matchings on the Tait graph of a knot diagram induce a discrete Morse function (dMf) on the two sphere, extending a construction due to Cohen. We show these dMfs are in bijection with certain rooted spanning forests in the Tait graph. We use this to count the number of such dMfs with a closed formula involving the graph Laplacian. We then simultaneously generalise Kauffman's Clock Theorem and Kenyon-Propp-Wilson's correspondence in two different directions; we first prove that the image of the correspondence induces a bijection on perfect dMfs, then we show that all perfect matchings, subject to an admissibility condition, are related by a finite sequence of click and clock moves. Finally, we study and compare the matching and discrete Morse complexes associated to the Tait graph, in terms of partial Kauffman states, and provide some computations.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Alejandra Castro ◽  
Victor Godet ◽  
Joan Simón ◽  
Wei Song ◽  
Boyang Yu

Abstract We revisit the spectrum of linear axisymmetric gravitational perturbations of the (near-)extreme Kerr black hole. Our aim is to characterise those perturbations that are responsible for the deviations away from extremality, and to contrast them with the linearized perturbations treated in the Newman-Penrose formalism. For the near horizon region of the (near-)extreme Kerr solution, i.e. the (near-)NHEK background, we provide a complete characterisation of axisymmetric modes. This involves an infinite tower of propagating modes together with the much subtler low-lying mode sectors that contain the deformations driving the black hole away from extremality. Our analysis includes their effects on the line element, their contributions to Iyer-Wald charges around the NHEK geometry, and how to reconstitute them as gravitational perturbations on Kerr. We present in detail how regularity conditions along the angular variables modify the dynamical properties of the low-lying sector, and in particular their role in the new developments of nearly-AdS2 holography.


2021 ◽  
Vol 25 (2) ◽  
pp. 359-381
Author(s):  
Sascha Desmettre ◽  
Gunther Leobacher ◽  
L. C. G. Rogers

AbstractIt is generally understood that a given one-dimensional diffusion may be transformed by a Cameron–Martin–Girsanov measure change into another one-dimensional diffusion with the same volatility but a different drift. But to achieve this, we have to know that the change-of-measure local martingale that we write down is a true martingale. We provide a complete characterisation of when this happens. This enables us to discuss the absence of arbitrage in a generalised Heston model including the case where the Feller condition for the volatility process is violated.


Author(s):  
R. Radha ◽  
Vishnu Dutt Sharma ◽  
Akshay Kumar

In this paper, using the compatible theory of differential invariants, a class of exact solutions is obtained for nonhomogeneous quasilinear hyperbolic system of partial differential equations (PDEs) describing rate type materials; these solutions exhibit genuine nonlinearity that leads to the formation of discontinuities such as shocks and rarefaction waves. For certain nonconstant and smooth initial data, the solution to the Riemann problem is presented providing a complete characterisation of the solutions.


2021 ◽  
Vol 8 (2) ◽  
pp. 1-9
Author(s):  
Willie Han Wah Wong ◽  
◽  
Eng Guan Tay ◽  

2020 ◽  
Vol 36 (36) ◽  
pp. 430-445
Author(s):  
Marija Dodig

In this paper, the possible Kronecker invariants of a matrix pencil with a prescribed quasi-regular subpencil are determined. 


2020 ◽  
Vol 102 (3) ◽  
pp. 399-409
Author(s):  
MICHAEL COONS

We present a complete characterisation of the radial asymptotics of degree-one Mahler functions as $z$ approaches roots of unity of degree $k^{n}$, where $k$ is the base of the Mahler function, as well as some applications concerning transcendence and algebraic independence. For example, we show that the generating function of the Thue–Morse sequence and any Mahler function (to the same base) which has a nonzero Mahler eigenvalue are algebraically independent over $\mathbb{C}(z)$. Finally, we discuss asymptotic bounds towards generic points on the unit circle.


Sign in / Sign up

Export Citation Format

Share Document