line voltage
Recently Published Documents


TOTAL DOCUMENTS

464
(FIVE YEARS 93)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Vol 11 (24) ◽  
pp. 11944
Author(s):  
Naveed Ashraf ◽  
Ghulam Abbas ◽  
Nasim Ullah ◽  
Ali Nasser Alzaed ◽  
Ali Raza ◽  
...  

The problem of voltage sag and swell is one of the major reasons for low-quality power in the distribution system. Normally, it results from the system’s faults, including line-to-ground and line-to-line, non-linear characteristics of loads and sources. Its effect is very serious for the critical loads as their performance is very sensitive to the variation in voltage. The stabilization of voltage is a mandatory requirement in such a situation. The correction of such problems requires the addition and subtraction of the voltage once the line voltage is decreased and increased. This behavior of the correcting voltage is ensured by the use of voltage controllers that can convert a constant input voltage into a non-inverted and inverted variable form. Their voltage gains depend on the depth level of the problem. The voltage buck and boost capabilities of the AC voltage stabilizers can tackle the problems having any depth level. The smartness of such a system depends on the number of electronic devices as they are the key elements in the power conversion system. Therefore, this research proposes a new AC voltage controller with fewer solid-state devices. Its overall impact is low volume and cost. The validation of the introduced approach is ensured with the help of simulation modeling and results gained from the practical setup.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3059
Author(s):  
Zhiqiang Wang ◽  
Sheng Hao ◽  
Dongyang Han ◽  
Xuefeng Jin ◽  
Xin Gu

With the increasing power level of wind power generation system, the traditional topology of power converters can no longer meets the demand of high-power wind power generation systems due to the limitation of device performance. The line voltage cascade type multiple PWM converter (LVC-VSC) is a kind of converter that uses the traditional two-level and six-switch voltage source converter as the basic component unit, and each unit is combined with the line voltage cascade method. This type of converter is suitable for medium-voltage and high-power applications such as wind power generation and metallurgical drives because of its easy modularization, strong scalability and low number of isolated power supplies required. However, for medium-voltage and high-power applications, the switching frequency of power devices in the converter is low, usually limited to a few hundred hertz. The traditional modulation method of line voltage cascade converter has a large number of redundant states, and simply reducing the carrier ratio will cause serious degradation of control performance and system instability. To address this problem, this paper proposes a modulation strategy and a corresponding control method for low switching frequency. The modulation strategy is based on the vector relationship of finite switching states, and the optimal switching sequence is selected according to the modulation system by removing redundant states, thus ensuring the application of different modulation sequences under different modulation depths and ensuring the current quality on the basis of the minimum switching frequency, which effectively solves the control problems at low switching frequency. The experimental results show the correctness and effectiveness of the proposed modulation strategy and control method.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8126
Author(s):  
Daisuke Iioka ◽  
Takahiro Fujii ◽  
Toshio Tanaka ◽  
Tsuyoshi Harimoto ◽  
Junpei Motoyama ◽  
...  

In this study, we have proposed a novel current injection determination method that improves the voltage unbalance based on the unbalanced line impedance in a distribution network with a large-capacity PV system. An increase in the unbalance of the distribution line voltage was observed owing to a large-scale reverse power flow. To visualize this phenomenon, the P-V curves were derived for each phase to indicate the increase in the voltage unbalance with respect to the reverse power flow. Based on the derived P-V curves, the effect of a current unbalance on the voltage unbalance was investigated. It was clarified that there is a current unbalance that can improve the voltage unbalance even if the line impedance is unbalanced. In other words, the current unbalance that can theoretically make the voltage unbalance zero could be expressed in terms of the symmetrical components of unbalanced line impedance. As an application of the proposed method, the effect of the mitigation of voltage unbalance was demonstrated by controlling single-phase reactors, whose numbers were determined by using the relationship between the unbalanced line current and unbalanced line impedance.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012094
Author(s):  
V A Kim ◽  
Ya M Kashin ◽  
L E Kopelevich

Abstract The paper describes the characteristics of a combined motor of a separator drive. Simulation experiment provided the characteristics of a combined motor of a separator drive, which allow considering the impact of the line voltage parameters (the supply voltage amplitude and frequency) and the resistance moment created by the separated product on the electromagnetic torque of a combined motor of the separator drive and the rotation speed of the working body of the separator with a combined motor.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5872
Author(s):  
Vaclav Kus ◽  
Bohumil Skala ◽  
Pavel Drabek

The paper deals with a new methodology for calculating the filter parameters. The basis is respect for the fact that the real filter current consists of other harmonic components, which filter is tuned. The proposed methodology was used to design filters for traction substation 25 kV/50 Hz. The operation of the locomotives in the AC supply systems of 25 kV/50 Hz leads to a rising of higher order harmonic currents. Due to the 1-phase supply system, these are mainly the 3rd and 5th harmonics. By simulation and subsequent measurement of the proposed traction power station filters the proposed methodology was verified. Thus, the filter design can also be used for filter compensating stations of the standard 3-phase distribution network. The described method presents an optimal filter design without unnecessary oversizing. This fact reduces the size and cost of the filter. It is shown that it is possible to design a filter that meets the requirements for power quality under extreme load and to minimise distortion of line voltage.


2021 ◽  
Vol 31 (2) ◽  
pp. 92-99

In this research, a new space vector modulation control algorithm is proposed to increase the reliability and the accuracy of the cascaded H-bridge multilevel inverters in case of faulty situations where one or several power cells do not function. When one or more switches of a cell are opened or shorted, that cell is considered faulty. By giving a detailed analysis on the impact of the faulty power cells on the voltage space vectors, the inapplicable voltage vectors are removed precisely. Consequently, the optimal redundant switching states are chosen such that the highest possible output voltage can be achieved. In addition, the balance of the three phases line-to-line voltage and current are maintained. The proposed algorithm is also generalized so that it can be applied to any level of H-bridge inverters. The validity of the method is verified by numerical simulations using MATLAB Simulink with an 11-level cascaded H-bridge inverter.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1541
Author(s):  
Yu-Kai Chen ◽  
Xian-Zhi Qiu ◽  
Yung-Chuna Wu ◽  
Chau-Chung Song

In this paper, the compensation of voltage sags and swells using a dynamic voltage restorer (DVR) based on a bi-directional AC/AC converter is presented for stabilizing single-phase AC line voltage. The H-bridge AC/AC converter with bi-directional switches and without bulk capacitor is adopted as the power topology of the proposed system. The proposed novel topology of DVR is adopted to compensate both voltage sag and swell conditions. Additionally, the power factor is closed to unity because a bulk capacitor is not required. The inner and outer loop control is proposed to improve the response with gain scaling; gain control is adopted to reduce the overshoot. Finally, a 2 kVA prototype has been implemented to verify the performance and accuracy of the control method for the DVR system. The peak efficiency of the system is up to 94%, and it can compensate 50% voltage swells and 25% voltage sags.


Sign in / Sign up

Export Citation Format

Share Document